【题目】已知二次函数y=x2+x的图象,如图所示.
(1)在同一直角坐标系中用描点法画出一次函数y=x+的图象,观察图象写出自变量x取值在什么范围时,一次函数的值小于二次函数的值;
(2)如图,点P是坐标平面上的一点,并在网格的格点上,请选择一种适当的平移方法,使平移后二次函数图象的顶点落在P点上,写出平移后二次函数图象的函数表达式,并判断点P是否在函数y=x+的图象上,请说明理由.
【答案】(1)当x<﹣1.5或x>1时,一次函数的值小于二次函数的值;(2)点P在直线y=x+的函数图象上.
【解析】试题分析:
(1)由题意和图可知,小正方形的边长为0.5个单位长度,这样先求得直线上任意两点的坐标,根据坐标在图中描出这两个点,然后画出过这两点的直线即可得到直线y=x+的函数图象,然后找出一次函数图象位于抛物线下方部分x的取值范围即可;
(2)先依据抛物线的顶点坐标和点P的坐标,确定出抛物线移动的方向和距离,然后依据抛物线的顶点式写出抛物线的解析式即可,将点P的坐标代入函数解析式,如果点P的坐标符合函数解析式,则点P在直线上,否则点P不在直线上.
试题解析:
(1)∵将x=0代入y=x+得y=,将x=1代入得:y=2,
∴直线y=x+经过点(0, ),(1,2).
由抛物线y=x2+x与x轴左侧交点的位置可知,图中小正方形的边长为0.5个单位长度,由此可画出直线y=x+的图象如下图所示:
由函数图象可知:当x<﹣1.5或x>1时,一次函数的值小于二次函数的值.
(2)由抛物线y=x2+x=(x+)2-可知,抛物线的顶点坐标为(, ),点P的坐标为(-1,1),
∴先将抛物线向上平移个单位,再向左平移个单位,即可使平移后的抛物线顶点落在点P(﹣1,1)处.
∴平移后的二次函数的表达式为:y=(x+1)2+1,即:y=x2+2x+2;
点P在y=x+的函数图象上.理由如下:
∵把x=﹣1代入y=x+得:y=1,
∴点P的坐标符合直线的解析式.
∴点P在直线y=x+的函数图象上.
科目:初中数学 来源: 题型:
【题目】某文教店购进一批钢笔,按进价提高40%后标价,为了增加销量,文教店决定按标价打八折出售,这时每支钢笔的售价为28元.
(1)求每支钢笔的进价为多少元;
(2)该文教店卖出这批钢笔的一半后,决定将剩下的钢笔以每3支80元的价格出售,很快销售完毕,销售这批钢笔文教店共获利2800元,求该文教店共购进这批钢笔多少支?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解学生体育活动的情况,学校设计了“你最喜欢的体育活动是哪一项(仅限一项)”的调查问卷.该校对学生进行随机抽样调查,以下是根据调查数据得到的不完整的统计图.请根据统计图中信息解答以下问题:
(1)该校对多少名学生进行了抽样调查?
(2)①请补全图1并标上数据,
②图2中x=__________% ;
(3)若该校共有学生900人,请你估计该校最喜欢跳绳项目的学生约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A点坐标为(﹣4,﹣3),将线段OA绕原点O顺时针旋转90°得到OA′,则点A′的坐标是( )
A. (﹣4,3) B. (﹣3,4) C. (3,﹣4) D. (4,﹣3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,AB//ED, BF平分∠ABC, DF平分∠EDC.
(1)若∠ABC =130°,∠EDC=110°,求∠C的度数和∠BFD的度数;
(2)请直接写出∠BFD与∠C的关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】蔬菜经营户老王,近两天经营的是青菜和西兰花.
(1)昨天的青菜和西兰花的进价和售价如下表,老王用600元批发青菜和西兰花共200斤,老王昨天青菜和西兰花各进了多少斤?
青菜 | 西兰花 | |
进价(元/斤) | 2.6 | 3.4 |
售价(元/斤) | 3.6 | 4.6 |
(2)今天因进价不变,老王仍用600元批发青菜和西兰花共200斤,但在运输中青菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,青菜每斤售价至少为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若AC=6,BC=8,OA=2,求线段DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.
(1)求抛物线的解析式;
(2)若直线BC的函数解析式为y’=kx+b,求当满足y<y’时,自变量x的取值范围.
(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.
(1)在方程①3x-1=0;②x+1=0;③x-(3x+1)=-5中,不等式组关联方程是______(填序号).
(2)若不等式组的一个关联方程的根是整数,则这个关联方程可以是______(写出一个即可).
(3)若方程9-x=2x,3+x=2(x+)都是关于x的不等式组的关联方程,试求出m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com