精英家教网 > 初中数学 > 题目详情
(2013•扬州)如果10b=n,那么b为n的劳格数,记为b=d(n),由定义可知:10b=n与b=d(n)所表示的b、n两个量之间的同一关系.
(1)根据劳格数的定义,填空:d(10)=
1
1
,d(10-2)=
-2
-2

(2)劳格数有如下运算性质:
若m、n为正数,则d(mn)=d(m)+d(n),d(
m
n
)=d(m)-d(n).
根据运算性质,填空:
d(a3)
d(a)
=
3
3
(a为正数),若d(2)=0.3010,则d(4)=
0.6020
0.6020
,d(5)=
0.6990
0.6990
,d(0.08)=
-1.097
-1.097

(3)如表中与数x对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.
x 1.5 3 5 6 8 9 12 27
d(x) 3a-b+c 2a-b a+c 1+a-b-c 3-3a-3c 4a-2b 3-b-2c 6a-3b
分析:(1)根据定义可知,d(10)和d(10-2)就是指10的指数,据此即可求解;
(2)根据d(a3)=d(a•a•a)=d(a)+d(a)+d(a)即可求得
d(a3)
d(a)
的值;
(3)通过9=32,27=33,可以判断d(3)是否正确,同理以依据5=10÷2,假设d(5)正确,可以求得d(2)的值,即可通过d(8),d(12)作出判断.
解答:解:(1)1,-2;

(2)
d(a3)
d(a)
=
3d(a)
d(a)
=3;
利用计算器可得:100.3010≈2,100.6020≈4,100.6990≈5,10-1.097≈0.08,
故d(4)=0.6020,d(5)=d(10)-d(2)=1-0.3010=0.6990,d(0.08)=-1.097;

(3)若d(3)≠2a-b,则d(9)=2d(3)≠4a-2b,
d(27)=3d(3)≠6a-3b,
从而表中有三个劳格数是错误的,与题设矛盾,
∴d(3)=2a-b,
若d(5)≠a+c,则d(2)=1-d(5)≠1-a-c,
∴d(8)=3d(2)≠3-3a-3c,
d(6)=d(3)+d(2)≠1+a-b-c,
表中也有三个劳格数是错误的,与题设矛盾.
∴d(5)=a+c.
∴表中只有d(1.5)和d(12)的值是错误的,应纠正为:
d(1.5)=d(3)+d(5)-1=3a-b+c-1,
d(12)=d(3)+2d(2)=2-b-2c.
点评:本题考查整式的运算,正确理解规定的新的运算法则是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•扬州)如图,在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,则梯形ABCD的周长为
30
30

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•扬州)如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O恰好落在
AB
上的点D处,折痕交OA于点C,则
AD
的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•扬州)如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为
AB
上两点,且∠MEB=∠NFB=60°,则EM+FN=
33
33

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•扬州)如图,抛物线y=x2-2x-8交y轴于点A,交x轴正半轴于点B.
(1)求直线AB对应的函数关系式;
(2)有一宽度为1的直尺平行于y轴,在点A、B之间平行移动,直尺两长边所在直线被直线AB和抛物线截得两线段MN、PQ,设M点的横坐标为m,且0<m<3.试比较线段MN与PQ的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•扬州)如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.
(1)求y与x的函数关系式;
(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;
(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.

查看答案和解析>>

同步练习册答案