【题目】如图,在东西方向的海面线上,有,两艘巡逻船和观测点(,,在直线上),两船同时收到渔船在海面停滞点发出的求救信号.测得渔船分别在巡逻船,北偏西和北偏东方向,巡逻船和渔船相距120海里,渔船在观测点北偏东方向.(说明:结果取整数.参考数据:,.)
(1)求巡逻船与观测点间的距离;
(2)已知观测点处45海里的范围内有暗礁.若巡逻船沿方向去营救渔船有没有触礁的危险?并说明理由.
【答案】(1)76海里;(2)没有触礁的危险,理由见解析
【解析】
(1)作.根据直角三角形性质求AE,CE,AB,再证.所以.
(2)作.证BF=DF,由BF2+DF2=BD2可求解.
解:(1)作.
因为渔船分别在巡逻船,北偏西和北偏东方向,
所以∠CAE=60°, ∠CBE=45°
所以∠ACE=30°, ∠ACB=180°-60°-45°=75°;
所以(海里),(海里).
所以.
因为渔船在观测点北偏东方向.
所以∠CDE=75
所以∠CDE=∠ACB,
所以.
所以.
即.
解得,.
∴海里.
(2)没有触礁的危险.
作.
因为∠CBD=45°
所以BF=DF
所以BF2+DF2=BD2
即DF2+DF2=762
可求得.
∵,
∴没有触礁的危险.
科目:初中数学 来源: 题型:
【题目】二次函数y=x2+bx﹣t的对称轴为x=2.若关于x的一元二次方程x2+bx﹣t=0在﹣1<x<3的范围内有实数解,则t的取值范围是( )
A. ﹣4≤t<5B. ﹣4≤t<﹣3C. t≥﹣4D. ﹣3<t<5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,4)、B(-4,n)两点.
(1)分别求出一次函数与反比例函数的表达式;
(2)根据所给条件,请直接写出不等式kx+b>的解集 ;
(3)过点B作BC⊥x轴,垂足为点C,连接AC,求S△ABC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了响应市政府号召,某校开展了“六城同创与我同行”活动周,活动周设置了“A:文明礼仪,B:生态环境,C:交通安全,D:卫生保洁”四个主题,每个学生选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下条形统计图和扇形统计图.
(1)本次随机调查的学生人数是______人;
(2)请你补全条形统计图;
(3)在扇形统计图中,“B”所在扇形的圆心角等于______度;
(4)小明和小华各自随机参加其中的一个主题活动,请用画树状图或列表的方式求他们恰好选中同一个主题活动的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A的坐标为(3,2),点B的坐标为(3,0).作如下操作:
(1)以点A为旋转中心,将△ABO顺时针方向旋转90°,得到△AB1O1;
(2)以点O为位似中心,将△ABO放大,得到△A2B2O,使位似比为1:2,且点A2在第三象限.
①在图中画出△AB1O1和△A2B2O;
②请直接写出点A2的坐标: .
③如果△ABO内部一点M的坐标为(m,n),写出点M在△A2B2O内的对应点N的坐标: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.
(1)画出△ABC向上平移6个单位得到的△A1B1C1;
(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知矩形 ABCD 的一条边 AD=8,将矩形 ABCD 折叠,使得顶点 B 落在 CD 边上的 P 点处.
(1)求证:△OCP∽△PDA;
(2)若△OCP 与△PDA 的面积比为 1:4,求边 AB 的长;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是规格为8×8的正方形网格,请在所给的网格中按下列要求操作.
(1)在网格中建立平面直角坐标系,使点的坐标为,点的坐标为.
(2)在第二象限内的格点上画一点,使点与线段组成一个以为底的等腰三角形,且腰长是无理数.求点的坐标及的周长(结果保留根号).
(3)将绕点顺时针旋转90°后得到,以点为位似中心将放大,使放大前后的位似比为1:2,画出放大后的的图形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,∠A=90°,∠ADC=120°,连接BD,把△ABD沿BD翻折,得到△A′BD,连接A′C,若AB=3,∠ABD=60°,则点D到直线A′C的距离为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com