精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线过点A(4,0),B(﹣2,0),C(0,﹣4).

(1)求抛物线的解析式;

(2)如图,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标.

【答案】(1)y=x2﹣x﹣4(2)当x=2时,△ACM的面积最大,图中阴影部分的面积最小值,此时M点坐标为(2,﹣4)

【解析】

根据A、B点的坐标特点设函数解析式为y=a(x+2)(x﹣4),然后将C点坐标代入即可求;

连接AC,M点坐标为(x, x2﹣x﹣4)利用x表示出SACM然后转化成函数解析式即可求解.

(1)设抛物线解析式为y=a(x+2)(x﹣4),

C(0,﹣4)代入得a2(﹣4)=﹣4,

解得a=

∴抛物线解析式为y=x+2)(x4),

y=x2x4

(2)连接AC,则AC与抛物线所围成的图形的面积为定值,

ACM的面积最大时,图中阴影部分的面积最小值,

MNy轴交ACN,如图甲,

M(x, x2﹣x﹣4),

A(4,0),C(0,﹣4)知线段AC所在直线解析式为y=x﹣4,

N(x,x﹣4),

MN=x﹣4﹣(x2﹣x﹣4)=﹣x2+2x,

SACM=SMNC+SMNA4MN=﹣x2+4x=﹣(x﹣2)2+4,

x=2时,ACM的面积最大,图中阴影部分的面积最小值,

此时M点坐标为(2,﹣4).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.

(1)求此抛物线的解析式;

(2)求C、D两点坐标及BCD的面积;

(3)若点P在x轴上方的抛物线上,满足SPCD=SBCD,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:在平面直角坐标系中,点Q坐标为(x,y),若过点Q的直线lx轴夹角为45°时,则称直线l为点Q的“湘依直线”.

(1)已知点A的坐标为(6,0),求点A的“湘依直线”表达式;

(2)已知点D的坐标为(0,﹣4),过点D的“湘依直线”图象经过第二、三、四象限,且与x轴交于C点,动点P在反比例函数y=(x>0)上,求△PCD面积的最小值及此时点P的坐标;

(3)已知点M的坐标为(0,2),经过点M且在第一、二、三象限的“湘依直线”与抛物线y=x2+(m﹣2)x+m+2相交与A(x1,y1),B(x2,y2)两点,若0≤x1≤2,0≤x2≤2,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,AB⊥AC,AB=1,BC= .对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.

(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;

(2)试说明在旋转过程中,线段AF与EC总保持相等;

(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰RtABC中,∠ACB90°,ACBCD是线段BC上一动点(不与点BC重合),连接AD,延长BC至点E,使得CECD,过点EEFAD于点F,再延长EFAB于点M

1)若DBC的中点,AB4,求AD的长;

2)求证:BMCD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为半圆O的直径,ADBC分别切⊙OAB两点,CD切⊙O于点EADCD相交于DBCCD相交于C,连结ODOEOC,对于下列结论:

AD+BC=CD②∠DOC=90°S梯形ABCD=CDOA

其中结论正确的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上任意一点,且CD切⊙O于点D.

(1)试求∠AED的度数.

(2)若⊙O的半径为cm,试求△ADE面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数上有一点,点横坐标为1,过点的直线轴分别交于点、点.

(1)求一次函数与反比例函数的解析式;

(2)将直线沿轴方向向下平移使其过反比例函数的右支图象上的点,且点横坐标为,直线交轴于点,连接,求.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面就两个情景请你作出评判.

情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.

情景二:AB是河流l两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由:

你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?

查看答案和解析>>

同步练习册答案