精英家教网 > 初中数学 > 题目详情
某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,进行如下讨论:
甲同学:这种多边形不一定是正多边形,如圆内接矩形.
乙同学:我发现边数是6时,它也不一定是正多边形,如图1,△ABC是正三角形,,证明六边形ADBECF的各内角相等,但它未必是正六边形.
丙同学:我能证明,边数是5时,它是正多边形,我想…,边数是7时,它可能也是正多边形.
(1)请你说明乙同学构造的六边形各内角相等;
(2)请你证明,各内角都相等的圆内接七边形ABCDEFG(如图2)是正七边形;(不必写已知,求证)
(3)根据以上探索过程,提出你的猜想.(不必证明)

【答案】分析:要证明一个圆内接多边形是正多边形,只要证明多边形的顶点是圆的等分点就可以了.
解答:解:(1)由图知∠AFC对
,而∠DAF对的
∴∠AFC=∠DAF.同理可证,其余各角都等于∠AFC,
故图(1)中六边形各角相等;

(2)∵∠A对,∠B对
又∵∠A=∠B,


同理,

(3)猜想:当边数是奇数时(或当边数是3,5,7,9,时),
各内角相等的圆内接多边形是正多边形.
点评:本题主要考查了连接圆的等分点所得到的多边形是正多边形这一结论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,进行如下讨论:
甲同学:这种多边形不一定是正多边形,如圆内接矩形.
乙同学:我发现边数是6时,它也不一定是正多边形,如图1,△ABC是正三角形,
AD
=
BE
=
CF
,证明六边形ADBECF的各内角相等,但它未必是正六边形.
丙同学:我能证明,边数是5时,它是正多边形,我想…,边数是7时,它可能也是正多边形.
(1)请你说明乙同学构造的六边形各内角相等;
(2)请你证明,各内角都相等的圆内接七边形ABCDEFG(如图2)是正七边形;(不必写已知,求精英家教网证)
(3)根据以上探索过程,提出你的猜想.(不必证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•婺城区一模)某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,有如下探讨:

甲同学:我发现这种多边形不一定是正多边形.如圆内接矩形不一定是正方形.
乙同学:我知道,边数为3时,它是正三角形;我想,边数为5时,它可能也是正五边形…
丙同学:我发现边数为6时,它也不一定是正六边形.如图2,△ABC是正三角形,弧AD、弧BE、弧CF均相等,这样构造的六边形ADBECF不是正六边形.
(1)如图1,若圆内接五边形ABCDE的各内角均相等,则∠ABC=
108°
108°
,请简要说明圆内接五边形ABCDE为正五边形的理由.
(2)如图2,请证明丙同学构造的六边形各内角相等.
(3)根据以上探索过程,就问题“各内角都相等的圆内接多边形是否为正多边形”的结论与“边数n(n≥3,n为整数)”的关系,提出你的猜想(不需证明).

查看答案和解析>>

科目:初中数学 来源:《24.3 正多边形与圆》2009年同步练习(解析版) 题型:解答题

某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,进行如下讨论:
甲同学:这种多边形不一定是正多边形,如圆内接矩形.
乙同学:我发现边数是6时,它也不一定是正多边形,如图1,△ABC是正三角形,,证明六边形ADBECF的各内角相等,但它未必是正六边形.
丙同学:我能证明,边数是5时,它是正多边形,我想…,边数是7时,它可能也是正多边形.
(1)请你说明乙同学构造的六边形各内角相等;
(2)请你证明,各内角都相等的圆内接七边形ABCDEFG(如图2)是正七边形;(不必写已知,求证)
(3)根据以上探索过程,提出你的猜想.(不必证明)

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《圆》(14)(解析版) 题型:解答题

(2004•云南)某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,进行如下讨论:
甲同学:这种多边形不一定是正多边形,如圆内接矩形.
乙同学:我发现边数是6时,它也不一定是正多边形,如图1,△ABC是正三角形,,证明六边形ADBECF的各内角相等,但它未必是正六边形.
丙同学:我能证明,边数是5时,它是正多边形,我想…,边数是7时,它可能也是正多边形.
(1)请你说明乙同学构造的六边形各内角相等;
(2)请你证明,各内角都相等的圆内接七边形ABCDEFG(如图2)是正七边形;(不必写已知,求证)
(3)根据以上探索过程,提出你的猜想.(不必证明)

查看答案和解析>>

同步练习册答案