【题目】如图,已知BCAC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且ADAOAMAP,连接OP.
(1)证明:MD//OP;
(2)求证:PD是⊙O的切线;
(3)若AD24,AMMC,求的值.
【答案】(1)证明见解析;(2)证明见解析;(3).
【解析】
(1)根据两边成比例夹角相等两三角形相似证明,然后利用平行线的判定定理即可.
(2)欲证明PD是⊙O的切线,只要证明OD⊥PA即可解决问题;
(3)连接CD.由(2)可知:PC=PD,由AM=MC,推出AM=2MO=2R,在Rt△AOD中,,可得
,推出
,推出
,
,由
,可得
,再利用全等三角形的性质求出MD即可解决问题;
(1)证明:连接、
、
.
∵,
,
∴,
∴,
∴,
(2)∴,
∴,
,
∵,
∴,
∴,
∵,
,
∴,
∴,
∵,
∴,
∴,
∴是
的切线.
(3)连接.由(1)可知:
,
∵,
∴,
在中,
,
∴,
∴,∴
,
,
∵,
∴,
∵是
的中点,
∴,
∴点是
的中点,
∴,
∵是
的直径,
∴,在
中,
∵,
,
∴,
∵,
∴,
,
∴,
∴.
科目:初中数学 来源: 题型:
【题目】七(2)班共有50名学生,老师安排每人制作一件型或
型的陶艺品,学校现有甲种制作材料36
,乙种制作材料29
,制作
、
两种型号的陶艺品用料情况如下表:
需甲种材料 | 需乙种材料 | |
1件 | 0.9 | 0.3 |
1件 | 0.4 | 1 |
(1)设制作型陶艺品
件,求
的取值范围;
(2)请你根据学校现有材料,分别写出七(2)班制作型和
型陶艺品的件数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙人5场10次投篮命中次数如图
(1)填写表格.
平均数 | 众数 | 中位数 | 方差 | |
甲 | ______ | 8 | 8 | ______ |
乙 | 8 | ______ | ______ | 3.2 |
(2)①教练根据这5个成绩,选择甲参加投篮比赛,理由是什么?
②如果乙再投篮1场,命中8次,那么乙的投监成绩的方差将会怎样变化?(“变大”“变小”或”不变”)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一边是另一边的倍的三角形叫做智慧三角形,这两边中较长边称为智慧边,这两边的夹角叫做智慧角.
(1)已知为智慧三角形,且
的一边长为,则该智慧三角形的面积为_________;
(2)如图①,在中,
,
,求证:
是智慧三角形;
(3)如图②,是智慧三角形,
为智慧边,
为智慧角,
,点
在函数
(
)的图象上,点
在点
的上方,且点
的纵坐标为
,当
是直角三角形时,求
的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线 (
为常数)与
轴交于点
和
与
轴交于点
,点
为抛物线顶点.
(Ⅰ)当时,求点
,点
的坐标;
(Ⅱ)①若顶点在直线
上时,用含有
的代数式表示
;
②在①的前提下,当点的位置最高时,求抛物线的解析式;
(Ⅲ)若,当
满足
值最小时,求
的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.
(1)求证:四边形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数的图像与
轴交于
两点,与
轴交于
,对称轴为直线
,顶点为
.
(1)求该二次函数的解析式;
(2)经过、
两点的直线交抛物线的对称轴于点
,点
为直线
上方抛物线上的一动点,当点
在什么位置时,
的面积最大?并求此时点
的坐标及
的最大面积;
(3)如图,平移抛物线,使抛物线的顶点在射线
上移动,点
平移后的对应点为
,点
的对应点为点
,连接
、
,
是否能为等腰三角形?若能,请求出所有符合条件的点
的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,在平面直角坐标系中,直线 与
轴交于点A,与
轴交于点B,抛物线
经过A、B两点,与
轴的另一个交点为C.
(1)直接写出点A和点B的坐标;
(2)求抛物线的函数解析式;
(3)D为直线AB下方抛物线上一动点;
①连接DO交AB于点E,若DE:OE=3:4,求点D的坐标;
②是否存在点D,使得∠DBA的度数恰好是∠BAC度数2倍,如果存在,求点D 的坐标,如果不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中(如图),已知抛物线
经过点
,与
轴交于点
,,抛物线的顶点为点
,对称轴与
轴交于点
.
(1)求抛物线的表达式及点的坐标;
(2)点是
轴正半轴上的一点,如果
,求点
的坐标;
(3)在(2)的条件下,点是位于
轴左侧抛物线上的一点,如果
是以
为直角边的直角三角形,求点
的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com