分析 根据有一个角是60°的等腰三角形是等边三角形得:△ABC是等边三角形,由此可计算边长为6cm,根据等腰三角形三线合一的性质得中线AD是高线和角平分线,所以可以求得CD的长,由外角定理证明∠CDE=∠E,所以CE=CD=3cm.
解答 解:∵AB=AC,∠A=60°,
∴△ABC是等边三角形,
∴AC=BC=AB,∠ABC=∠ACB=∠A=60°,
∵△ABC的周长是18cm,
∴AB=AC=BC=$\frac{1}{3}$×18=6cm,
∵D是AC的中点,
∴CD=$\frac{1}{2}$AC=$\frac{1}{2}$×6=3cm,
∵AB=BC,D是AC的中点,
∴∠CBD=$\frac{1}{2}$∠ABC=$\frac{1}{2}$×60°=30°,
∵BD=DE,
∴∠CBD=∠E=30°,
∵∠ACB是△DCE的一个外角,
∴∠ACB=∠E+∠CDE,
∴∠CDE=60°-30°=30°,
∴∠CDE=∠E,
∴CE=CD=3cm.
点评 本题考查了等腰三角形和等边三角形的性质和判定,是常考题型,难度不大;要熟练掌握等腰三角形三线合一的性质:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合;熟记由等腰三角形来判定等边三角形常用的判定方法:有一个角是60°的等腰三角形是等边三角形.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
1 | ● | ○ | x | 7 | -3 | … |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2 个 | C. | 3 个 | D. | 4 个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com