精英家教网 > 初中数学 > 题目详情
精英家教网已知△ABC中,AB=AC=5,BC=8,点D在BC边上移动,连接AD,将△ADC沿直线AD翻折,此时点C的对应点为C1,AC1交边BC于点E.
(1)当点D移动到AC1与BC垂直时,此时CD的长为多少?
(2)设CD=x,BE=y,求y关于x的函数解析式及自变量x的取值范围;
(3)在点D的移动过程中,是否可以使得△EC1D成为等腰三角形?若存在,请直接写出x的值;若不存在,请说明理由.
分析:(1)当AC1与BC垂直时,点E是BC的中点,有CE=
1
2
BC=4,由勾股定理可求得AE=3,由于C1D=CD,A1C=AC,在Rt△C1DE中,由勾股定理可求得ED的值,再求得CD的值;
(2)易证△ABE∽△D1CE,得到AB:C1D=AE:ED=BE:EC1,先求得ED,再得到BE与CD的关系式;
(3)分两种情况:当C1E=ED时和当C1E=C1D时,可由(2)中的关系式求得.
解答:解:(1)∵AC1与BC垂直,AB=AC=5,BC=8
∴CE=
1
2
BC=4
在Rt△AEC中,AE=
AC2-CE2
=3
∵C1D=CD,AC1=AC=5,EC1=AC1-AE,ED=EC-CD
∴在Rt△EDC1中,有ED2+EC12=C1D2,即CD2=(5-3)2+(4-CD)2
解得:CD=
5
2
精英家教网

(2)
∵AB=AC
∴∠B=∠C
∵∠C1=∠C
∴∠C1=∠B
又∵∠AEB∠DEC1
∴△AEB∽△DEC1
∴AB:DC1=AE:DE=BE:C1E
∴5:C1D=AE:(8-BE-CD)=BE:(5-AE)
∵BE=y,CD=C1D=x
∴5:x=AE:(8-y-x)=y:(5-AE)
解得AE=
25-xy
5
,y=
50(x-4)
x2-25
(0<x<4);

(3)存在.
当C1E=ED时,由于△AEB∽△DEC1,则有y=BE=AE=
25-xy
5

∴y=
25
5+x

25
5+x
=
50(x-4)
x2-25

∴x=3;
当C1E=C1D时,由于△AEB∽△DEC1,则有y=
50(x-4)
x2-25
=BE=AB=5,
解得x=5-
10
点评:本题考查了翻折的性质、勾股定理、相似三角形的判定和性质、等腰三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程证明△ABD≌△ACD的理由.
∵AD平分∠BAC,
∴∠BAD=∠
 
(角平分线的定义).
在△ABD和△ACD中,
(               )
(               )
(               )

∴△ABD≌△ACD
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知△ABC中,AB=AC,AD为BC边上的中线,BE为AC边上的高,
(1)在图中作出中线AD(要求用尺规作图,保留作图痕迹,不写作法与证明);
(2)设AD,BE交于点F,若∠ABC=70°,求∠DFB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC中,AB=20,AC=15,BC边上的高为12,则△ABC的周长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.
∵AD平分∠BAC
∴∠
BAD
BAD
=∠
CAD
CAD
(角平分线的定义)
在△ABD和△ACD中

∴△ABD≌△ACD
SAS
SAS

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:已知△ABC中,AB=17cm,BC=30cm,BC边上的中线AD=8cm.求证:△ABC是等腰三角形.

查看答案和解析>>

同步练习册答案