精英家教网 > 初中数学 > 题目详情
9、a、b、c、m都是有理数,且a+2b+3c=m,a+b+2c=m,那么b与c的关系是(  )
分析:由于a+2b+3c=m,a+b+2c=m,则a+2b+3c=a+b+2c,则b与c的关系即可求出.
解答:解:由题意得,a+2b+3c=m,a+b+2c=m,
则a+2b+3c=a+b+2c,即b+c=0,b与c互为相反数.
故选A.
点评:本题考查了代数式的换算,比较简单,容易掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、吴老师要考察两名学生小明和小刚聪明程度.他想好了一个正整数n,把n的一下两个特征都告诉了小明和小刚:①n是一个三位数;②n是完全平方数.吴老师还把n的3个数字的和s告诉了小明,另外把n的3个数字的积p告诉了小刚.小明和小刚进行了如下的对话:
小刚:我知道s是2位数.其实我知道n是多少,我还知道你不知道n是多少.
小明:那么现在我知道n是多少了.
吴老师证实了小明和小刚都是诚实的,他俩说的每句话都是有根据的.那么n=
841

查看答案和解析>>

科目:初中数学 来源: 题型:

矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形.正方形不仅是特殊的平行四边形,而且是邻边相等的特殊矩形,也是有一个角是直角的特殊菱形.因此,我们可以利用矩形、菱形的性质来研究正方形的有关问题,回答下列问题:
(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系图中:
精英家教网
(2)要证明一个四边形是正方形,可以先证明四边形是矩形,再证明这个矩形的
 
相等;或者先证明四边形是菱形,再证明这个菱形有一角是
 

(3)如下图菱形ABCD,某同学根据菱形面积计算公式推导出对角线长为a的正方形面积是S=
12
a2
,对此结论,你认为是否正确?若正确,请给予证明;若不正确,举出一个反例来说明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形,正方形不仅是特殊的矩形,也是特殊的菱形.因此,我们可利用矩形、菱形的性质来研究正方形的有关问题.回答下列问题:
(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系的下图中.
(2)要证明一个四边形是正方形,可先证明四边形是矩形,再证明这个矩形的
 
相等;或者先证明四边形是菱形,在证明这个菱形有一个角是
 

(3)某同学根据菱形面积计算公式推导出对角线长为a的正方形面积是S=0.5a2,对此结论,你认为是否精英家教网正确?若正确,请说明理由;若不正确,请举出一个反例说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

下列图案都是有若干个全等的等边三角形按一定规律摆放而成,依此规律,第10个图中等边三角形的个数为
40
40

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011广西崇左,22,10分)(本小题满分10分)矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形,正方形不仅是特殊的矩形,也是特殊的菱形.因此,我们可利用矩形、菱形的性质来研究正方形的有关问题.回答下列问题:

(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系的下图中.

(2)要证明一个四边形是正方形,可先证明四边形是矩形,再证明这个矩形的_______相等;或者先证明四边形是菱形,在证明这个菱形有一个角是________ .

(3)某同学根据菱形面积计算公式推导出对角线长为a的正方形面积是S=0.5a2,对此结论,你认为是否正确?若正确,请说明理由;若不正确,请举出一个反例说明.

 

查看答案和解析>>

同步练习册答案