精英家教网 > 初中数学 > 题目详情
如图所示,在等腰梯形ABCD中,已知AD∥BC,AB=DC,∠ACB=42°,∠ACD=27°.
(1)∠BAC=
69
69
°;
(2)如果BC=10cm,连接BD,求BD的长度.
分析:(1)先求出∠BCD的度数,根据等腰梯形的性质可得出∠ABC的度数,在△ABC中利用勾股定理可得出∠BAC的度数;
(2)结合(1)的结论,可得出AC=BC,再由等腰梯形的对角线相等即可得出BD的长度.
解答:解:(1)∵∠ACB=42°,∠ACD=27°,
∴∠BCD=∠BCA+∠ACD=69°;

(2)∵∠ABC=∠BAC=69°,
∴AC=BC=10cm,
又∵四边形ABCD是等腰梯形,
∴BD=AC=10cm.
点评:本题考查了等腰梯形的性质,解答本题关键是掌握等腰梯形的对角线相等,同一底边上的底角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、如图所示,在等腰梯形ABCD中,AD∥BC,AB=CD,点P为BC边上任意一点,且
PE⊥AB,PF⊥CD,BG⊥CD,垂足分别是E、F、G,请你探索PE、PF、BG的长度之间的关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

1、如图所示,在等腰梯形ABCD中,AD∥BC,DE⊥BC于点E,BF⊥AE于点F,请你添加一个条件,使△ABF≌△CDE.
(1)你添加的一个条件是
AE=BE

(2)请写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

48、如图所示,在等腰梯形ABCD中,AD∥BC,AB=CD,DE⊥BC于E,BF⊥AE于F,AE=BE.请你判断线段BF与图形中哪条线段相等,先写出你的猜想,再加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在等腰梯形ABCD中,AB∥CD,若AB+CD=4,并且∠AOB=120°,则该等腰梯形的面积为
 
(结果保留根号的形式).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在等腰梯形ABCD中,AD∥BC,过A作腰CD的平行线,AE∥CD,AB=AD=DC,∠B=60°
(1)△ABE是什么三角形?说明理由;
(2)已知,AB=5,试求梯形ABCD的周长及对角线AC的长.

查看答案和解析>>

同步练习册答案