精英家教网 > 初中数学 > 题目详情
如图,已知在直角梯形ABCD中,AB∥CD,CD=9,∠B=90°,,P、Q分别是边AB、CD上的动点(点P不与点A、点B重合),且有BP=2CQ。
(1)求AB的长;
(2)设,四边形PADQ的面积为,求关于的函数关系式,并写出的取值范围。
(3)以C为圆心、CQ为半径作⊙C ,以P为圆心、以PA的长为半径作⊙P。当四边形PADQ是平行四边形时,试判断⊙C与⊙P的位置关系,并说明理由。

解:(1)作DH⊥AB,
       在Rt△AHD中,
       ∴
       ∴

(2)依题意,当时,则
    ∴
    ∴
          
(3)当四边形PADQ是平行四边形时,
     DQ=AP,
  即
  ∴x=3,
  ∴⊙C的半径CQ=3,⊙P的半径PA=12-2x=6,
  在Rt△PBC中,∠B=90°,
  ∴
  ∴
即两圆半径之和等于圆心距,所以⊙C与⊙P外切。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、如图,已知在直角梯形AOBC中,AC∥OB,CB⊥OB,OB=18,BC=12,AC=9,对角线OC、AB交于点D,点E、F、G分别是CD、BD、BC的中点,以O为原点,直线OB为x轴建立平面直角坐标系,则G、E、D、F四个点中与点A在同一反比例函数图象上的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,已知在直角梯形ABCD中,BC∥AD,AB⊥AD,底AD=6,斜腰CD的垂直平分线EF交AD于G,交BA的延长线于F,且∠D=45°,求BF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在直角梯形ABCD中,AB∥CD,CD=9,∠B=90°,BC=3
5
,tanA=
5
,P、Q分别是边AB、CD上的动点(点P不与点A、点B重合),且有BP=2CQ.
(1)求AB的长;
(2)设CQ=x,四边形PADQ的面积为y,求y关于x的函数关系式,并写出x的取值范围;
(3)以C为圆心、CQ为半径作⊙C,以P为圆心、以PA的长为半径作⊙P.当四边形PADQ是平行四边形时,试判断⊙C与⊙P的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在直角梯形ABCD中,AB∥CD,∠B=∠C=90°,AB=2,BC=7,CD=6,在BC上找一点P,使△ABP∽△DCP,求出BP的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在直角梯形AOBC中,AC∥OB,CB⊥OB,OB=18,BC=12,AC=9,对角线OC、AB交于点D,点E、F、G分别是CD、BD、BC的中点,以O为原点,直线OB为x轴建立平面直角坐标系,则G、E、D、F四个点中与点A在同一反比例函数图象上的是点
(18,6)
(18,6)

查看答案和解析>>

同步练习册答案