精英家教网 > 初中数学 > 题目详情
如图,以A(0,
3
)为圆心的圆与x轴相切于坐标原点O,与y轴相交于点B,弦BD精英家教网的延长线交x轴的负半轴于点E,且∠BEO=60°,AD的延长线交x轴于点C.
(1)分别求点E、C的坐标;
(2)求经过A、C两点,且以过E而平行于y轴的直线为对称轴的抛物线的函数解析式;
(3)设抛物线的对称轴与AC的交点为M,试判断以M点为圆心,ME为半径的圆与⊙A的位置关系,并说明理由.
分析:(1)已知了A点的坐标,即可得出圆的半径和直径,可在直角三角形BOE中,根据∠BEO和OB的长求出OE的长进而可求出E点的坐标,同理可在直角三角形OAC中求出C点的坐标.
(2)已知了对称轴的解析式,可据此求出C点关于对称轴对称的点的坐标,然后根据此点坐标以及C,A的坐标用待定系数法即可求出抛物线的解析式.
(3)两圆应该外切,由于直线DE∥OB,因此∠MED=∠ABD,由于AB=AD,那么∠ADB=∠ABD,将相等的角进行置换后可得出∠MED=∠MDE,即ME=MD,因此两圆的圆心距AM=ME+AD即两圆的半径和,因此两圆外切.
解答:解:(1)在Rt△EOB中EO=
OB
tan60°
=
2
3
3
=2,
∴点E的坐标为(-2,0),
在Rt△COA中,OC=OA•tan∠CAO=OA•tan60°=
3
×
3
=3,
∴点C的坐标为(-3,0).

(2)∵点C关于对称轴x=-2对称的点的坐标为(-1,0),
点C与点(-1,0)都在抛物线上,
设y=a(x+1)(x+3),把A(0,
3
)代入得,
3
=a(0+1)(0+3),
∴a=
3
3

∴y=
3
3
(x+1)(x+3)
即y=
3
3
x2+
4
3
3
x+
3


(3)⊙M与⊙A外切,
证明如下:∵ME∥y轴,
∴∠MED=∠B,
∵∠B=∠BDA=∠MDE,
∴∠MED=∠MDE,
∴ME=MD,
∵MA=MD+AD=ME+AD,
∴⊙M与⊙A外切.
点评:本题着重考查了待定系数法求二次函数解析式、切线的性质、圆与圆的位置关系等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=5,则图中阴影部分的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•老河口市模拟)如图,以△ABC的边AB为直径的⊙O与边BC交于点D,过点D作DE⊥AC,垂足为E,延长AB、ED交于点F,AD平分∠BAC.
(1)求证:EF是⊙O的切线;
(2)若AE=3,AB=4,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以等边△OAB的边OB所在直线为x轴,点O为坐标原点,使点A在第一象限建立平面直角坐标系,其中△OAB边长为4个单位,点P从O点出发沿折线OAB向B点以2个单位/秒的速度向终点B点运动,点Q从B点出发以1个单位/秒的速度向终点O点运动,两个点同时出发,运动时间为t(秒).
(1)请用t表示点P的坐标
(t,
3
t)或(t,4
3
-
3
t)
(t,
3
t)或(t,4
3
-
3
t)
和点Q的坐标
(4-t,0)
(4-t,0)
,其中t的取值范围是
0≤t≤2或2<t≤4
0≤t≤2或2<t≤4

(2)当t=
4
5
4
5
时,PQ⊥OA;当t=
16
5
16
5
时,PQ⊥AB;当t=
2
2
时,PQ⊥OB;
(3)△OPQ面积为S,求S关于t的函数关系式并指出S的最大值;
(4)若直线PQ将△OAB分成面积比为3:5两部分?求此时直线PQ的解析式;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=940,S2=1080,则S3=
2020
2020

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以直角三角形三边为边长作正方形,其中两个以直角边为边长的正方形面积分别为250和400,则正方形A的面积是(  )

查看答案和解析>>

同步练习册答案