精英家教网 > 初中数学 > 题目详情
如图,AD是△ABC的高,作∠DCE=∠ACD,交AD的延长线于点E,点F是点C关于直线AE的对称点,连接AF.
(1)求证:CE=AF;
(2)在线段AB上取一点N,使∠ENA=
12
∠ACE,EN交BC于点M,连接AM.请你判断∠B与∠MAF的数量关系,并说明理由.
分析:(1)由于∠ADC=∠EDC=90°,∠DCE=∠ACD,根据等腰三角形的判定方法得到△ACE为等腰三角形,则AC=CE,由点F是点C关于AE的对称点,根据对称的性质得到AD垂直平分FC,则AF=AC,则AF=CE;
(2)由(1)得到CD垂直平分AE,则AM=ME,得到∠1=∠2,对顶角相等得到∠2=∠3,则∠1=∠3,由AC=AF得∠4=∠ACD,根据∠ENA=
1
2
∠ACE,∠DCE=∠ACD=
1
2
∠ACE,∠ACD=∠ENA,于是有∠4=∠ENA,然后根据三角形外角性质有∠4=∠1+∠MAF,∠ENA=∠3+∠B,即可得到∠B=∠MAF.
解答:(1)证明:∵AD是△ABC的高,
∴∠ADC=∠EDC=90°,∠DCE=∠ACD,
∴△ACE为等腰三角形,
∴AC=CE,
又∵点F是点C关于AE的对称点,
∴AF=AC,
∴AF=CE;

(2)解:∠B=∠MAF.理由如下:
∵AC=CE,∠DCE=∠ACD,
∴AD=DE,
又∵AD是△ABC的高,
∴DC垂直平分AE,
∴AM=ME,
∴∠1=∠2,
∵∠2=∠3,
∴∠1=∠3,
∵AC=AF,
∴∠4=∠ACD,
∵∠ENA=
1
2
∠ACE,∠DCE=∠ACD=
1
2
∠ACE,
∴∠ACD=∠ENA,
∴∠4=∠ENA,
∵∠4=∠1+∠MAF,∠ENA=∠3+∠B,
∴∠B=∠MAF.
点评:本题考查了全等三角形的判定与性质:有两组角对应相等,且它们所夹的边相等,那么这两个三角形全等;全等三角形的对应边相等.也考查了等腰三角形的判定与性质、线段垂直平分线的判定与性质以及对称的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,AD是△ABC的高线,且AD=2,若将△ABC及其高线平移到△A′B′C′的位置,则A′D′和B′D′位置关系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC是角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则AD与EF的位置关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知:如图,AD是△ABC的角平分线,且 AB:AC=3:2,则△ABD与△ACD的面积之比为
3:2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm.
(1)求△ABD与△ACD的周长之差.
(2)若AB边上的高为2cm,求AC边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,如果△DEF的面积是2,那么△ABC的面积为(  )

查看答案和解析>>

同步练习册答案