精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,对于点P(xy),我们把点(-y+1x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,这样依次得到点A1A2A3An….若点A1的坐标为(24),点A2017的坐标为 ( )

A. (-33) B. (-2-2) C. (3-1) D. (24)

【答案】D

【解析】

根据伴随点的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2017除以4,根据商和余数的情况确定点A2017的坐标即可.

∵点A1的坐标为(24),
A2-4+12+1)即(-33),A3-3+1-3+1)即(-2-2),A42+1-2+1)即(3-1),A524),

依此类推,每4个点为一个循环组依次循环,
2017÷4=5041
∴点A2017的坐标与A1的坐标相同,为(24);
故选D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的3倍,则称这样的方程为立根方程.以下关于立根方程的说法:

方程x2﹣4x﹣12=0是立根方程;

若点(p,q)在反比例函数y=的图象上,则关于x的方程px2+4x+q=0是立根方程;

若一元二次方程ax2+bx+c=0是立根方程,且相异两点M(1+t,s),N(4﹣t,s)都在抛物线y=ax2+bx+c上,则方程ax2+bx+c=0的其中一个根是

正确的是(  )

A. ①② B. C. D. ②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长青化工厂与AB两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5/(吨·千米),铁路运价为1.2/(吨·千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.

求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?

2)这批产品的销售款比原料费与运输费的和多多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】目前由重庆市教育委员会,渝北区人们政府主办的阳光下成长重庆市第八届中小学生艺术展演活动落下帷幕,重庆一中学生舞蹈团、管乐团、民乐团、声乐团、话剧团等五大艺术团均荣获艺术表演类节目一等奖,重庆一中获优秀组织奖,重庆一中老师李珊获先进个人奖,其中重庆一中舞蹈团将代表重庆市参加明年的全国集中展演比赛,若以下两个统计图统计了舞蹈组各代表队的得分情况:

1m   ,在扇形统计图中分数为7的圆心角度数为   度.

2)补全条形统计图,各组得分的中位数是   分,众数是   分.

3)若舞蹈组获得一等奖的队伍有2组,已知主办方各组的奖项个数是按相同比例设置的,若参加该展演活动的总队伍数共有120组,那么该展演活动共产生了多少个一等奖?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+cx轴交于点A(-2,0),顶点坐标为(2,n),与y轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①当x>6时,y<0;②5a+b>0;③a≤-,④4≤n<5中,正确有(  

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AOB=30°OP平分AOBPDOBDPCOBOAC,若PC=6,则PD=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点的坐标为(04),线段的位置如图所示,其中点的坐标为(),点的坐标为(3).

(1)将线段平移得到线段,其中点的对应点为,点的对应点为点.

①点平移到点的过程可以是:先向 平移 个单位长度,再向 平移 个单位长度;

②点的坐标为 .

(2)(1)的条件下,若点的坐标为(40),连接,画出图形并求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45°、35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.

(结果保留整数,参考数据:sin35°≈,cos35°≈,tan35°≈)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B﹣A﹣D﹣A运动,沿B﹣A运动时的速度为每秒13个单位长度,沿A﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点 B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.

(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).

(2)连结AQ,在点P沿B﹣A﹣D运动过程中,当点P与点B、点A不重合时,记APQ的面积为S.求S与t之间的函数关系式.

(3)过点Q作QRAB,交AD于点R,连结BR,如图.在点P沿B﹣A﹣D运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.

(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′BC时t的值.

查看答案和解析>>

同步练习册答案