【题目】如图,直线y=x+1与y轴交于A点,与反比例函数(x>0)的图象交于点M,过M作MH⊥x轴于点H,且.
(1)求k的值;
(2)设点N(1,a)是反比例函数(x>0)图象上的点,在y轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.
【答案】(1)6;(2)(0,5).
【解析】试题分析:(1)对于直线y=x+1,令x=0求出y的值,确定出A坐标,得到OA的长,根据tan∠AHO的值,利用锐角三角函数定义求出OH的长,根据MH垂直于x轴,得到M横坐标与A横坐标相同,再由M在直线y=x+1上,确定出M坐标,代入反比例解析式求出k的值即可;
(2)将N坐标代入反比例解析式求出a的值,确定出N坐标,过N作N关于y轴的对称点N1,连接MN1,交y轴于P(如图),此时PM+PN最小,由N与N1关于y轴的对称,根据N坐标求出N1坐标,设直线MN1的解析式为y=kx+b,把M,N1的坐标代入求出k与b的值,确定出直线MN1的解析式,令x=0求出y的值,即可确定出P坐标.
试题解析:
(1)由y=x+1可得A(0,1),即OA=1,
∵,
∴OH=2,
∵MH⊥x轴,
∴点M的横坐标为2,
∵点M在直线y=x+1上,
∴点M的纵坐标为3,即M(2,3),
∵点M在上,
∴k=2×3=6;
(2)∵点N(1,a)在反比例函数的图象上,
∴a=6,即点N的坐标为(1,6),
过N作N关于y轴的对称点N1,连接MN1,交y轴于P(如图),
此时PM+PN最小,
∵N与N1关于y轴的对称,N点坐标为(1,6),
∴N1的坐标为(﹣1,6),
设直线MN1的解析式为y=kx+b,
把M,N1的坐标得,
解得: ,
∴直线MN1的解析式为y=﹣x+5,
令x=0,得y=5,
∴P点坐标为(0,5).
科目:初中数学 来源: 题型:
【题目】“地球停电一小时”活动的某地区烛光晚餐中,设座位有 x 排,每排坐 30 人,则有 8 人无座位;每排坐 31 人,则空 26 个座位.则下列方程正确的是( )
A.30x﹣8=31x﹣26
B.30x + 8=31x+26
C.30x + 8=31x﹣26
D.30x﹣8=31x+26
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小慧根据学习函数的经验,对函数的图象与性质进行了研究,下面是小慧的研究过程,请补充完成:
(1)函数的自变量的取值范围是__________;
(2)列表,找出与的几组对应值.
其中, __________;
(3)在平面直角坐标系中,描出以上表中各队对应值为坐标的点,并画出该函数的图象;
(4)写出该函数的一条性质:____________________________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是( )
组别 | A型 | B型 | AB型 | O型 |
频率 | 0.4 | 0.35 | 0.1 | 0.15 |
A.16人
B.14人
C.4人
D.6人
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.
(1)求一次函数和反比例函数的解析式;
(2)求△AOB的面积;
(3)观察图象,直接写出不等式kx+b﹣>0的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列各式:(1)42-12=3×5;(2)52-22=3×7;(3)62-32=3×9;………则第10个等式为___________________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是( )
A.1.71
B.1.85
C.1.90
D.2.31
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,若要建一个长方形鸡场,鸡场的一边靠墙,墙对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长33米.
(1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米?
(2)围成鸡场的面积可能达到200平方米吗?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com