精英家教网 > 初中数学 > 题目详情

【题目】如图,∠ACB=90°,AC=BC,点C(1,2)、A(-2,0),则点B的坐标是__________.

【答案】(3,-1)

【解析】

CB分别作CDODD,BECDE,利用已知条件可证明ADC≌△CEB,再由全等三角形的性质和已知数据即可求出B点的坐标.

CB分别作CDODD,BECDE,

∵∠ACB=90°,

∴∠ACD+CAD=90°,ACD+BCE=90°,

∴∠CAD=BCE,

ADCCEB中,

ADC=CEB=90°;CAD=BCE,AC=BC,

ADCCEB(AAS),

DC=BE,AD=CE,

∵点C的坐标为(1,2),A的坐标为(2,0),

AD=CE=3,OD=1,BE=CD=2,

∴则B点的坐标是(3,1).

故答案为:(3,1).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:关于x的方程:mx2﹣(3m﹣1)x+2m﹣2=0.
(1)求证:无论m取何值时,方程恒有实数根;
(2)若关于x的二次函数y=mx2﹣(3m﹣1)x+2m﹣2的图象与x轴两交点间的距离为2时,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点O是等边△ABC内的任一点,连接OA,OB,OC.
(1)如图1,已知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.
①∠DAO的度数是多少?
②用等式表示线段OA,OB,OC之间的数量关系,并证明;
(2)设∠AOB=α,∠BOC=β.
①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;
②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知方程:①3x﹣1=2x+1,x﹣1=x中,解为x=2的是方程(  )

A. ②和③ B. ③和④ C. ③和④ D. ②和④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在扇形OAB中,∠AOB=90°,OA=3,将扇形OAB绕点A逆时针旋转n°(0<n<180)后得到扇形O′AB′,当点O在弧AB′上时,n为 , 图中阴影部分的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要 个小立方体,王亮所搭几何体的表面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一张长方形纸片,剪下一个正方形,剩下一个长方形,称为第一次操作;在剩下的长方形纸片中再剪下一个正方形,剩下一个长方形,称为第二次操作;;若在第n次操作后,剩下的长方形为正方形,则称原长方形为n阶奇异长方形.如图1,长方形ABCD中,若AB=2,BC=6,则称长方形ABCD2阶奇异长方形

(1)判断与操作:如图2,长方形ABCD长为10,宽为6,它是奇异长方形,请写出它是____阶奇异长方

形,并在图中画出裁剪线;

探究与计算:已知长方形ABCD的一边长为24,另一边长为a (a<24),且它是3阶奇异长方形,请画出所

有可能的长方形ABCD及裁剪线的示意图,并求出相应的a值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:
小昊遇到这样一个问题:如图1,在△ABC中,∠ACB=90°,BE是AC边上的中线,点D在BC边上,CD:BD=1:2,AD与BE相交于点P,求 的值.

(1)小昊发现,过点A作AF∥BC,交BE的延长线于点F,通过构造△AEF,经过推理和计算能够使问题得到解决(如图2).
请回答: 的值为
(2)参考小昊思考问题的方法,解决问题:
如图3,在△ABC中,∠ACB=90°,点D在BC的延长线上,AD与AC边上的中线BE的延长线交于点P,DC:BC:AC=1:2:3.
①求 的值;
(3)②若CD=2,则BP=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象经过点A(8,0),直线y=-3x+6x轴交于点B,y轴交于点D,且两直线交于点C(4,m).

(1)m的值及一次函数的解析式;

(2)求△ACD的面积。

查看答案和解析>>

同步练习册答案