精英家教网 > 初中数学 > 题目详情

【题目】下列说法中:全等三角形的对应边相等;全等三角形的对应角相等;全等三角形的周长相等;周长相等的两个三角形全等;全等三角形的面积相等;面积相等的两个三角形全等,正确说法有( )

A. 2 B. 3 C. 4个 D. 5个

【答案】C

【解析】

全等三角形是指能够完全重合的两个三角形,全等三角形的对应边相等,对应角相等,根据以上知识点逐个判断即可.

解:全等三角形的对应边相等;正确.

全等三角形的对应角相等;正确.

全等三角形的周长相等;正确.

周长相等的两个三角形全等;错误.

全等三角形的面积相等;正确.

面积相等的两个三角形全等错误

正确的说法有4个,

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图①,四边形ABCD中,BC∥AD,∠A=90°,点P从A点出发,沿折线AB→BC→CD运动,到点D时停止,已知△PAD的面积s与点P运动的路程x的函数图象如图②所示,则点P从开始到停止运动的总路程为(  )

A. 4 B. 2+ C. 5 D. 4+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系中,点A20)关于y轴对称的点A′的坐标为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0)、B(5,0)两点,与y轴交于C点,D为抛物线的顶点,E为抛物线上一点,且C、E关于抛物线的对称轴对称,分别作直线AE、DE.

(1)求此二次函数的关系式;

(2)在图1中,直线DE上有一点Q,使得△QCO≌△QBO,求点Q的坐标;

(3)如图2,直线DE与x轴交于点F,点M为线段AF上一个动点,有A向F运动,速度为每秒2个单位长度,运动到F处停止,点N由F处出发,沿射线FE方向运动,速度为每秒 个单位长度,M、N两点同时出发,运动时间为t秒,当M停止时点N同时停止运动坐标平面内有一个动点P,t为何值时,以P、M、N、F为顶点的四边形是特殊的平行四边形.请直接写出t值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算正确的是(  )
A.b3+b5=b8
B.a4a4a4=3a4
C.3a4×4a6=12a10
D.(﹣b25=﹣b7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若(am+1bn+2)(a2mb2n﹣1)=a4b7 , 则m+n=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为(
A.6
B.12
C.20
D.24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=+mx+3x轴交于AB两点,与y轴交于点C,点B的坐标为(30),

1)求m的值及抛物线的顶点坐标.

2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某青年旅社有60间客房供游客居住,在旅游旺季,当客房的定价为每天200元时,所有客房都可以住满.客房定价每提高10元,就会有1个客房空闲,对有游客入住的客房,旅社还需要对每个房间支出20/每天的维护费用,设每间客房的定价提高了x元.

(1)填表(不需化简)

入住的房间数量

房间价格

总维护费用

提价前

60

200

60×20

提价后

  

  

  

(2)若该青年旅社希望每天纯收入为14000元且能吸引更多的游客,则每间客房的定价应为多少元?(纯收入=总收入﹣维护费用)

查看答案和解析>>

同步练习册答案