精英家教网 > 初中数学 > 题目详情

如图7-33,将一长方形纸片一角斜折,使点A落在A′处,折痕为EF,EH平分∠A′EB,则∠FEH的度数为

A.60°              B.75°              C.90°               D.95°

图7-33

C

提示:EF、EH是角平分线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)解不等式:
x-3
2
-1>
x-5
3

(2)做一做:
精英家教网
用四块如图1的瓷砖拼成一个正方形,使拼成的图案成轴对称图形,请你在图2,图3,图4中各画出一种拼法(要求三种拼法各不相同,所画图案中的阴影部分用斜线表示)
(3)读一读:
式子“1+2+3+4+5+…+100”表示1开始的100个连续自然数的和.
由于上述式子比较长,书写也不方便,为了简便起见,我们可以将
“1+2+3+4+5+…+100”表示为
100
n=1
n
,这里“Σ”是求和符号.
例如:“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为
50
n=1
(2n-1)
;又如:“13+23+33+43+53+63+73+83+93+103”可表示为
10
n=1
n3

同学们,通过对以上材料的阅读,请解答下列问题:
<1>2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为
 

<2>计算:
5
n=1
(n2-1)=
 
(填写最后的计算结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直角梯形ABCD中,AD∥BC,A=90°,将两个这样的全等直角梯形的一条底边重合,恰好拼成一个各边长都相等的五边形,若这个五边形的面积为12+3
3
,则原直角梯形的底边BC长是
3+2
3
3+2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将一张宽为
3
的长方形纸条ABCD第一次沿BE折叠,再沿AE第二次折叠,使D1恰好落在BC上与D2点重合,若∠ABF=60°,则该纸条的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•盐都区一模)问题提出
我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.
问题解决
如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.
解:由图可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
类比应用
(1)已知:多项式M=2a2-a+1,N=a2-2a.试比较M与N的大小.
(2)已知:如图2,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a<b<c,现将△ABC 补成长方形,使得△ABC的两个顶
点为长方形的两个端点,第三个顶点落在长方形的这一边的对边上.
①这样的长方形可以画
3
3
个;
②所画的长方形中哪个周长最小?为什么?
拓展延伸
已知:如图3,锐角△ABC(其中BC为a,AC为b,AB为c)三边满足a<b<c,画其BC边上的内接正方形EFGH,使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【问题】在正方形网格中,如图(一),△OAB的顶点分别为O(0,0),A(1,2),B(2,-1).
(1)以点O(0,0)为位似中心,按比例尺3:1在位似中心的同侧将△OAB放大为△OA′B′,放大后点A、B的对应点分别为A′、B′.画出△OA′B′,并写出点A'、B'的坐标:A′(
3
3
6
6
),B′(
6
6
-3
-3
);
(2)在(1)中,若点C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标(
3a
3a
3b
3b
);
【拓展】在平面内,先将一个多边形以点O为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为k,并且原多边形上的任一点P,它的对应点P'在线段OP或其延长线上;接着将所得多边形以点O为旋转中心,逆时针旋转一个角度θ,这种经过和旋转的图形变换叫做旋转相似变换,记为O(k,θ),其中点O叫做旋转相似中心,k叫做相似比,θ叫做旋转角.
【探索】如图(二),完成下列问题:
(3)填空:如图1,将△ABC以点A为旋转相似中心,放大为原来的2倍,再逆时针旋转60°,得到△ADE,这个旋转相似变换记为A(
2
2
60°
60°
);
(4)如图2,△ABC是边长为3cm的等边三角形,将它作旋转相似变换A(
43
,90°)
,得到△ADE,求线段BD的长.

查看答案和解析>>

同步练习册答案