【题目】如图,在矩形ABCD中,AB=3,BC=4,点M是BC的中点,点P从点M出发沿MB以每秒1个单位的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;同时点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动,在点P,Q的运动过程中,以PQ为边作正方形PQEF,使它与矩形ABCD在BC的同侧,点P,Q同时出发,当点P返回点M时,则两点停止运动,设点P,Q运动的时间是t秒(t>0).
(1)当点P运动到BM的中点时,t= ;
(2)设正方形PQEF与矩形ABCD重叠部分的面积为S,直接写出S与t之间的函数关系式及t的取值范围;
(3)连结AC,当正方形PQEF与△ADC重叠部分为三角形时,求t的取值范围.
【答案】(1)1或3;(2)①S=4t2;②S=6t;③S=﹣3t+18;(3)<t≤或t=2
【解析】分析:(1)求出BM=BC=2,当点P第一次运动到BM的中点时,PM=BM=1,得出t=1;当点P第二次运动到BM的中点时,运动的路程=3,得出t=3即可;
(2)分为三种情况:①当0<t≤1.5时,PQ=2t,由正方形面积公式即可得出答案;
②当1.5<t≤2时得出PQ=2t,AB=3,由矩形面积即可得出答案;
③当2<t≤4时,求出PC=6-t,AB=3,由矩形面积即可得出答案;
(3)当点E在AC上时,得出△CEQ∽△CAB,得出对应边成比例,即可得出t的值;当F在AC上时,△CPF∽△CBA,得出对应边成比例,即可得出t的值;当点F在EA的延长线上时,点E在CD的延长线上,此时t=2;即可得出答案.
详解:(1)∵BC=4,点M是BC的中点,
∴BM=BC=2,
当点P第一次运动到BM的中点时,PM=BM=1,
∴t=1;
当点P第二次运动到BM的中点时,运动的路程=2+1=3,
∴t=3;
故答案为:1或3;
(2)分为三种情况:
①如图1,当0<t≤1.5时,
∵PQ=2t,
∴S=(2t)2,
∴S=4t2;
②如图2,
当1.5<t≤2时,
∵PQ=2t,AB=3,
∴S=6t;
③如图3,
当2<t≤4时,
∵PC=6﹣t,AB=3,
∴S=﹣3t+18;
(3)如图4,
当点E在AC上时,
∵△CEQ∽△CAB,
∴,
∴,
∴t=,
当F在AC上时,
∵△CPF∽△CBA,
∴,
∴,
∴t=;当点F在EA的延长线上时,点E在CD的延长线上,此时t=2;
∴t的取值范围是<t≤或t=2.
科目:初中数学 来源: 题型:
【题目】如图,直线分别与轴,轴交于两点,与直线交于点.
(1)点的坐标为__________,点的坐标为__________
(2)在线段上有一点,过点作轴的平行线交直线于点,设点的横坐标为,当为何值时,四边形是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,关于该二次函数,下列说法中错误的是( )
A. 函数有最小值 B. 对称轴是直线x=
C. 当﹣1<x<2时,y<0 D. 当x>时,y随x的增大而增大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】端午节期间,甲、乙两人沿同一路线行驶,各自开车同时去离家560千米的景区游玩,甲先以每小时60千米的速度匀速行驶1小时,再以每小时m千米的速度匀速行驶,途中体息了一段时间后,仍按照每小时m千米的速度匀速行驶,两人同时到达目的地,图中折线、线段分别表示甲、乙两人所走的路程,与时间之间的函数关系的图象请根据图象提供的信息,解决下列问题:
图中E点的坐标是______,题中______,甲在途中休息______h;
求线段CD的解析式,并写出自变量x的取值范围;
两人第二次相遇后,又经过多长时间两人相距20km?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某车间的甲、乙两名工人分别同时生产同种零件,他们一天生产零件y(个)与生产时间t(小时)的关系如图所示.
(1)根据图象回答:
①甲、乙中,谁先完成一天的生产任务;在生产过程中,谁因机器故障停止生产多少小时;
②当t等于多少时,甲、乙所生产的零件个数相等;
(2)谁在哪一段时间内的生产速度最快?求该段时间内,他每小时生产零件的个数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点D,E分别是△ABC的边BA和BC延长线上的点,作∠DAC的平分线AF,若AF∥BC.
(1)求证:△ABC是等腰三角形;
(2)作∠ACE的平分线交AF于点G,若∠B=40°,求∠AGC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程解应用题.
(1)某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200t;如果用新工艺,则废水排量比环保限制的最大量少100t;新、旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?
(2)元旦期间,晓睛驾车从珠海出发到香港,去时在港珠澳大桥上用了60分钟,返回时平均速度提高了5千米/小时,在港珠澳大桥上的用时比去时少用了5分钟,求港珠澳大桥的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断:
①OA=OC,②AB=CD,③∠BAD=∠DCB,④AD∥BC.
请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:
(1)构造一个真命题,画图并给出证明;
(2)构造一个假命题,举反例加以说明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com