精英家教网 > 初中数学 > 题目详情

【题目】如图,某科技物展览大厅有AB两个入口,CDE三个出口.小昀任选一个入口进入展览大厅, 参观结束后任选一个出口离开.

(1)若小昀已进入展览大厅,求他选择从出口C离开的概率.

(2)求小昀选择从入口A进入,从出口E离开的概率.(请用列表或画树状图求解)

【答案】(1); (2)

【解析】

1)用列举法即可求得;

2)画树状图(见解析)得出所有可能的结果,再分析求解即可.

1)小昀选择出口离开时的所有可能有3种:CDE,每一种可能出现的可能性都相等,因此他选择从出口C离开的概率为:

2)根据题意画树状图如下:

由树状图可以看出,所有可能出现的结果共有6种,即(AC)、(AD)、(AE)、(BC)、(BD)、(BE),这些结果出现的可能性相等

所以小昀选择从入口A进入,出口E离开(即AE)的概率为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如果一元二次方程ax2+bx+c=0 的两根 x1,x2均为正数,其中x1>x2且满足1<x1﹣x2<2,那么称这个方程有友好根”.

(1)方程(x﹣)(x﹣)=0_____友好根(填:“没有”);

(2)已知关于x x2﹣(t﹣1)x+t﹣2=0友好根,求 t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为O的直径,C是O上一点,过点C的直线交AB的延长线于点D,AEDC,垂足为E,F是AE与O的交点,AC平分BAE.

1求证:DE是O的切线;

2若AE=6,D=30°,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究

如图,在平面直角坐标系中,已知抛物线x轴交于AB两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点AD的坐标分别为(-20),(6,-8).

1)求抛物线的函数表达式,并分别求出点B和点E的坐标;

2)试探究抛物线上是否存在点F,使,若存在,请直接写出点F的坐标;若不存在,请说明理由;

3)若点Py轴负半轴上的一个动点,设其坐标为(0m),直线PB与直线l交于点Q.试探究:当m为何值时,是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线yax2+bx+c的顶点坐标为(29),与y轴交于点A(05),与x轴交于点EB

1)求二次函数yax2+bx+c的解析式;

2)过点AAC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点PAC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,线段PD最长?并求出最大值;

3)若点M在抛物线上,点N在其对称轴上,使得以AENM为顶点的四边形是平行四边形,求点M的坐标.(请直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(3,6)、B(9,一3),以原点O为位似中心,相似比为,把ABO缩小,则点A的对应点A的坐标是

A.(1,2)

B.(9,18)

C.(9,18)或(9,18)

D.(1,2)或(1,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图所示,已知二次函数yax2+bx+c的图象与x轴交于AB两点,与y轴交于点C,对称轴为直线x1.直线y=﹣x+c与抛物线yax2+bx+c交于CD两点,D点在x轴下方且横坐标小于3,则下列结论:ab+c0②2a+b+c0xαx+b)≤a+ba>﹣1.其中正确的有(  )

A.4B.3C.2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).

(1)求抛物线的解析式及它的对称轴;

(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;

(3)在抛物线的对称轴上是否存在点Q,使ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】超市有两种型号的瓶子,其容量和价格如表,小张买瓶子用来分装15升油(瓶子都装满,且无剩油);当日促销活动:购买型瓶3个或以上,一次性返还现金5元,设购买型瓶(个),所需总费用为(元),则下列说法不一定成立的是(

型号

A

B

单个盒子容量(升)

2

3

单价(元)

5

6

A.购买型瓶的个数是为正整数时的值B.购买型瓶最多为6

C.之间的函数关系式为D.小张买瓶子的最少费用是28

查看答案和解析>>

同步练习册答案