精英家教网 > 初中数学 > 题目详情
2、已知:(x2+y2+1)2-4=0,则x2+y2=
1
分析:首先根据条件可以得到(x2+y2+1)2=4,然后两边同时开平方即可求出x2+y2的值.
解答:解:∵(x2+y2+1)2-4=0,
∴(x2+y2+1)2=4,
∵x2+y2+1>0,
∴x2+y2+1=2,
∴x2+y2=1.
故答案为:1.
点评:本题考查了平方根的定义,形如x2=a的方程的解法,一般直接开方计算即可.此题也利用整体代值的思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:方程组
x2+y2=l(1)
y=1-x(2)
,把(2)代入(1),得到正确的方程是(  )
A、x2+2(1-x)=1
B、x2+2(x-1)=1
C、x2+(1-x)2=0
D、x2+(1-x)2=1

查看答案和解析>>

科目:初中数学 来源: 题型:

23、仿照例子解题:“已知(x2+2x-1)(x2+2x+2)=4,求x2+2x的值”,
在求解这个题目中,运用数学中的整体换元可以使问题变得简单,具体方法如下:
解:设x2+2x=y,则原方程可变为:(y-1)(y+2)=4
整理得y2+y-2=4即:y2+y-6=0
解得y1=-3,y2=2
∴x2+2x的值为-3或2
请仿照上述解题方法,完成下列问题:
已知:(x2+y2-3)(2x2+2y2-4)=24,求x2+y2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)先化简(
a2
a-2
+
4
2-a
)•
1
a2+2a
,再选你最喜欢的a值代入求值.
(2)已知:(x2+y22-(x2+y2)-12=0,求x2+y2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

“已知(x2+3x-4)•(x2+3x-5)=6,求x2+3x的值”,在求解这个题目中,运用数学中的整体换元可以使问题变得简单,具体方法如下:
解:设x2+3x=y,则原方程可变为:
(y-4)•(y-5)=6
整理得y2-9y+14=0
解得y1=2,y2=7
∴x2+3的值为2或7
请仿照上述解题方法,完成下列问题:
已知:(x2+y2-3)(2x2+2y2-4)=24,求x2+y2的值.

查看答案和解析>>

同步练习册答案