精英家教网 > 初中数学 > 题目详情

【题目】如图,AB⊙O的直径,AB=ACBC⊙O于点DAC⊙O于点E∠BAC=45°,给出以下五个结论:①∠EBC=22.5°②BD=DC③AE=2EC劣弧是劣弧2倍;⑤AE=BC,其中正确的序号是_________

【答案】①②④

【解析】

连接ADAB是直径,则AD⊥BC,又∵△ABC是等腰三角形,故点DBC的中点,即BD=CD,故正确;

∵AD∠BAC的平分线,由圆周角定理知,∠EBC=∠DAC=∠BAC=22.5°,故正确;

∵∠ABE=90°∠EBC∠BAD=45°=2∠CAD,故正确;

∵∠EBC=22.5°2EC≠BEAE=BE∴AE≠2CE不正确;

∵AE=BEBE是直角边,BC是斜边,肯定不等,故错误.

综上所述,正确的结论是:①②④

故答案为①②④

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)观察猜想:

RtABC中,∠BAC=90°,AB=AC,点D在边BC上,连接AD,把ABD绕点A逆时针旋转90°,点D落在点E处,如图①所示,则线段CE和线段BD的数量关系是   ,位置关系是   

(2)探究证明:

在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.

(3)拓展延伸:

如图③,∠BAC≠90°,若AB≠AC,∠ACB=45°AC=,其他条件不变,过点DDFADCE于点F,请直接写出线段CF长度的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对称轴为直线x=1的抛物线y=ax2+bx+8过点(﹣2,0).

(1)求抛物线的表达式,并写出其顶点坐标;

(2)现将此抛物线沿y轴方向平移若干个单位,所得抛物线的顶点为D,与y轴的交点为B,与x轴负半轴交于点A,过Bx轴的平行线交所得抛物线于点C,若AC∥BD,试求平移后所得抛物线的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,抛物线与轴相交于点,点,与轴相交于点与抛物线的对称轴相交于点.

1)求该抛物线的表达式,并直接写出点的坐标;

2)过点交抛物线于点,求点的坐标;

3)在(2)的条件下,点在射线上,若相似,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点CAECD于点E

(1)求证:AC平分∠DAE

(2)若AB=6,BD=2,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图抛物线yax2+bx+c的对称轴是x=﹣1,与x轴的一个交点为(﹣50),则不等式ax2+bx+c0的解集为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平而直角坐标系中,一次函数y=﹣4x+4的图象与x轴、y轴分别交于AB两点.正方形ABCD的项点CD在第一象限,顶点D在反比例函数yk≠0)的图象上.若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图象上,则n的值是(  )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线与x轴交于A(﹣1,0)、B(4,0)两点,与y轴交于点C(0,3).

(1)求抛物线的解析式;

(2)在x轴下方的抛物线上是否存在一点P,使△PAB的面积等于△ABC的面积?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形中,,点从点出发向点移动,速度为每秒1个单位长度,点从点出发向点移动,速度为每秒2个单位长度. 两点同时出发,且其中的任何一点到达终点后,另一点的移动同时停止.

1)若两点的运动时间为,当为何值时,

2)在(1)的情况下,猜想的位置关系并证明你的结论.

3)①如图2,当时,其他条件不变,若(2)中的结论仍成立,则_________.

②当时,其他条件不变,若(2)中的结论仍成立,则_________(用含的代数式表示).

查看答案和解析>>

同步练习册答案