精英家教网 > 初中数学 > 题目详情

已知直线y=数学公式数学公式的交点在第四象限内.
(1)求k的取值范围.
(2)若k为非负整数,点A的坐标为(2,0),在直线y=数学公式上是否存在一点P,使△PAO是以OA为底的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

解:(1)联立,解得
∵两直线交点在第四象限,
,解得-4<k<1;

(2)存在.
∵k为非负整数且-4<k<1,
∴k=0,直线y=解析式化为y=x-3,
而线段OA的垂直平分线为x=1,
当x=1时,y=x-3=-2
∴P(1,-2).
分析:(1)联立两直线解析式求交点坐标,再根据第四象限点的坐标特点求k的取值范围;
(2)存在.根据若k为非负整数及k的取值范围,确定k的值,作线段OA的垂直平分线与直线y=相交,求交点坐标即可.
点评:本题考查了一次函数的综合运用,等腰三角形的判断及两直线交点坐标的求法.关键是列方程组求交点坐标,根据交点所在的象限确定k的取值范围.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

精英家教网九年义务教育三年制初级中学教科书代数第三册中,有以下几段文字:“对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y)和它对应;对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M和它对应,也就是说,坐标平面内的点与有序实数对是一一对应的.”“一般地,对于一个函数,如果把自变量x与函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.”“实际上,所有一次函数的图象都是一条直线.”“因为两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线,就可以了.”由此可知:满足函数关系式的有序实数对所对应的点,一定在这个函数的图象上;反之,函数图象上的点的坐标,一定满足这个函数的关系式.另外,已知直线上两点的坐标,便可求出这条直线所对应的一次函数的解析式.
问题1:已知点A(m,1)在直线y=2x-1上,求m的方法是:
 
,∴m=
 
;已知点B(-2,n)在直线y=2x-1上,求n的方法是:
 
,∴n=
 

问题2:已知某个一次函数的图象经过点P(3,5)和Q(-4,-9),求这个一次函数的解析式时,一般先
 
,再由已知条件可得
 
.解得:
 
.∴满足已知条件的一次函数的解析式为:
 
.这个一次函数的图象与两坐标轴的交点坐标为:
 
,在右侧给定的平面直角坐标系中,描出这两个点,并画出这个函数的图象.像解决问题2这样,
 
的方法,叫做待定系数法.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线AB和直线CD被直线GH所截,交点分别为E、F点,且AB∥CD.
(1)若ME是∠AEF的平分线,FN是∠EFD的平分线,则EM与FN平行吗?若平行,试说明理由.
(2)若EK是∠BEF的平分线,则EK和FN垂直吗?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在下图中,已知直线AB和直线CD被直线GH所截,交点分别为E、F点,∠AEF=∠EFD.
(1)写出AB∥CD的根据;
(2)若ME是∠AEF的平分线,FN是∠EFD的平分线,则EM与FN平行吗?若平行,试写出根据.

查看答案和解析>>

科目:初中数学 来源:1999年河北省中考数学试卷 题型:解答题

(1999•河北)九年义务教育三年制初级中学教科书代数第三册中,有以下几段文字:“对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y)和它对应;对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M和它对应,也就是说,坐标平面内的点与有序实数对是一一对应的.”“一般地,对于一个函数,如果把自变量x与函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.”“实际上,所有一次函数的图象都是一条直线.”“因为两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线,就可以了.”由此可知:满足函数关系式的有序实数对所对应的点,一定在这个函数的图象上;反之,函数图象上的点的坐标,一定满足这个函数的关系式.另外,已知直线上两点的坐标,便可求出这条直线所对应的一次函数的解析式.
问题1:已知点A(m,1)在直线y=2x-1上,求m的方法是:    ,∴m=    ;已知点B(-2,n)在直线y=2x-1上,求n的方法是:    ,∴n=   
问题2:已知某个一次函数的图象经过点P(3,5)和Q(-4,-9),求这个一次函数的解析式时,一般先    ,再由已知条件可得    .解得:    .∴满足已知条件的一次函数的解析式为:    .这个一次函数的图象与两坐标轴的交点坐标为:    ,在右侧给定的平面直角坐标系中,描出这两个点,并画出这个函数的图象.像解决问题2这样,    的方法,叫做待定系数法.

查看答案和解析>>

同步练习册答案