精英家教网 > 初中数学 > 题目详情
10.如图,△ABC中,AB=AC,以AB为直径的⊙O交AC,BC分别于点E,D两点,连结ED,BE.
(1)求证:$\widehat{DE}$=$\widehat{BD}$.
(2)若BC=6.AB=5,求BE的长.

分析 (1)连接AD,根据圆周角定理得到AD⊥BC,根据等腰三角形的性质得到CD=BD,根据弦、弧、圆心角的关系定理证明结论;
(2)连接OD交BE于H,作OF⊥BD于F,根据勾股定理求出AD,根据三角形中位线定理求出OF,根据三角形的面积公式求出BH,根据垂径定理解答.

解答 (1)证明:连接AD,
∵AB为⊙O的直径,
∴AD⊥BC,
∵AB=AC,
∴CD=BD,
∵A、E、D、B四点共圆,
∴∠CED=∠ABC,
∵AB=AC,
∴∠ACB=∠ABC,
∴∠ACB=∠CED,
∴DE=DC,
∴DE=BD,
∴$\widehat{DE}$=$\widehat{BD}$;
(2)解:连接OD交BE于H,作OF⊥BD于F,
BD=$\frac{1}{2}$BC=3,AB=5,
又勾股定理得,AD=$\sqrt{A{B}^{2}-B{D}^{2}}$=4,
∵AD⊥BC,OF⊥BD,
∴OF∥AD,又OA=OB,
∴OF=$\frac{1}{2}$AD=2,
则$\frac{1}{2}$×$\frac{5}{2}$×BH=$\frac{1}{2}$×3×2,
解得,BH=$\frac{12}{5}$,
∵$\widehat{DE}$=$\widehat{BD}$,
∴BE=2BH=$\frac{24}{5}$.

点评 本题考查的是圆周角定理、弦、弧、圆心角的关系、垂径定理的应用,掌握相关定理、并灵活运用是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.如图,已知AC、EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=90°,当四边形ABCD和EFCG均为正方形时,连接BF.
(1)求证:△CAE∽△CBF;
(2)若BE=1,AE=2,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知:如图,在平面直角坐标系xOy中,反比例函数y1=$\frac{m}{x}$的图象与一次函数y2=kx+b的图象交于点A(-4,-1)和点B(1,n).
(1)求这两个函数的表达式;
(2)观察图象,当y1>y2时,直接写出自变量x的取值范围;
(3)如果点C与点A关于y轴对称,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.解方程
(1)4-3x=6-5x
(2)3x-4(x-1)=2(x+5)
(3)$\frac{x+1}{2}$-1=$\frac{2-3x}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,直线y=ax-4(a≠0)与双曲线y=$\frac{k}{x}$只有一个公共点A(1,-2).
(1)求k与a的值;
(2)若直线y=ax+b(a≠0)与双曲线y=$\frac{k}{x}$有两个公共点,请直接写出b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图(a),将两块直角三角尺的直角顶点C叠放在一起.
(1)若∠DCE=35°,∠ACB=145°;若∠ACB=140°,则∠DCE=40°;
(2)猜想∠ACB与∠DCE的大小有和特殊关系,并说明理由;
(3)如图(b),若是两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小有何关系,请说明理由;
(4)已知∠AOB=α,∠COD=β(α,β都是锐角),如图(c),若把它们的顶点O重合在一起,请直接写出∠AOD与∠BOC的大小关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.解方程组:
(1)$\left\{\begin{array}{l}{x+y=5}\\{2x+y=8}\end{array}\right.$
(2)$\left\{\begin{array}{l}{2x-5y=7}\\{3x+2y=1}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,已知△ABC是等边三角形,且AE=CD,AD、BE相交于P,BQ⊥AD于Q.
(1)求证:△ABE≌△CAD;
(2)求∠PBQ的度数;
(2)求证:BP=2PQ.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算:$\sqrt{24}$×$\sqrt{\frac{2}{3}}$-$\sqrt{18}$÷$\sqrt{2}$+(2-$\sqrt{2}$)0

查看答案和解析>>

同步练习册答案