精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC是等边三角形,点D是BC边上一动点,点E,F分别在AB,AC边上,连接AD,DE,DF,且∠ADE=∠ADF=60°.

小明通过观察、实验,提出猜想:在点D运动的过程中,始终有AE=AF,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:

想法1:利用AD是∠EDF的角平分线,构造△ADF的全等三角形,然后通过等腰三角形的相关知识获证.

想法2:利用AD是∠EDF的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.

想法3:将△ACD绕点A顺时针旋转至△ABG,使得AC和AB重合,然后通过全等三角形的相关知识获证.

请你参考上面的想法,帮助小明证明AE=AF.(一种方法即可)

【答案】见解析

【解析】

想法1:在DE上截取DG=DF,连接AG,先判定△ADG≌△ADF,得到AG=AF,再根据∠AEG=∠AGE,得出AE=AG,进而得到AE=AF;

想法2:过AAG⊥DEG,AH⊥DFH,依据角平分线的性质得到AG=AH,进而判定△AEG≌△AFH,即可得到AE=AF;

想法3:将△ACD绕着点A顺时针旋转至△ABG,使得ACAB重合,连接DG,判定△AGD是等边三角形,进而得出△AGE≌△ADF,即可得到AE=AF.

证明:

想法1:如图,在DE上截取DG=DF,连接AG,

∵△ABC是等边三角形,

∴∠B=C=60°,

∵∠ADE=ADF=60°,AD=AD,

∴△ADG≌△ADF,

AG=AF,1=2,

∵∠ADB=60°+∠3=60°+∠2,

∴∠3=2,

∴∠3=1,

∵∠AEG=60°+∠3,AGE=60°+∠1,

∴∠AEG=AGE,

AE=AG,

AE=AF;

想法2:如图,过AAGDEG,AHDFH,

∵∠ADE=ADF=60°,

AG=AH,

∵∠FDC=60°﹣1,

∴∠AFH=DFC=60°+∠1,

∵∠AED=60°+∠1,

∴∠AEG=AFH,

∴△AEG≌△AFH,

AE=AF;

想法3:如图,将△ACD绕着点A顺时针旋转至△ABG,使得ACAB重合,连接DG,

∴△ABG≌△ACD,

AG=AD,GAB=DAC,

∵△ABC是等边三角形,

∴∠BAC=ABC=C=60°,

∴∠GAD=60°,

∴△AGD是等边三角形,

∴∠ADG=AGD=60°,

∵∠ADE=60°,

G,E,D三点共线,

∴△AGE≌△ADF,

AE=AF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】教师运动会中,甲,乙两组教师参加“两人背夹球”往返跑比赛,即:每组两名教师用背部夹着球跑完规定的路程,若途中球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.若距起点的距离用y(米)表示,时间用x(秒)表示.下图表示两组教师比赛过程中yx的函数关系的图象.根据图象,有以下四个推断:

①乙组教师获胜

②乙组教师往返用时相差2秒

③甲组教师去时速度为0.5米/秒

④返回时甲组教师与乙组教师的速度比是2:3

其中合理的是( )

A. ①② B. ①③ C. ②④ D. ①④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)【提出问题】
如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.
(2)【类比探究】
如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.
(3)【拓展延伸】
如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一块三角板和半圆形量角器按图中方式叠放,三角板一边与量角器的零刻度线所在直线重合,重叠部分的量角器弧( )对应的圆心角(∠AOB)为120°,OC的长为2cm,则三角板和量角器重叠部分的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在手工制作课上,老师组织七年级(2)班的学生用硬纸制作圆柱形茶叶筒.七年级(2)班共有学生44人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身50个或剪筒底120个.

1)七年级(2)班有男生、女生各多少人?

2)要求一个筒身配两个筒底,为了使每小时剪出的筒身与筒底刚好配套,应该分配多少名学生剪筒身,多少名学生剪筒底?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2013年5月7日浙江省11个城市的空气质量指数(AQI)如图所示:
(1)这11个城市当天的空气质量指数的极差、众数和中位数分别是多少?
(2)当0≤AQI≤50时,空气质量为优.求这11个城市当天的空气质量为优的频率;
(3)求宁波、嘉兴、舟山、绍兴、台州五个城市当天的空气质量指数的平均数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……

(1)写出第一次移动后这个点在数轴上表示的数为

(2)写出第二次移动后这个点在数轴上表示的数为

(3)写出第五次移动后这个点在数轴上表示的数为

4写出第次移动结果这个点在数轴上表示的数为

(5)如果第次移动后这个点在数轴上表示的数为56,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y= x2+bx与直线y=2x交于点O(0,0),A(a,12).点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E.

(1)求抛物线的函数解析式;
(2)若点C为OA的中点,求BC的长;
(3)以BC,BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m,n之间的关系式.
(4)将射线OA绕原点旋转45°并与抛物线交于点P,求出P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线y= (x﹣m)2 m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.

(1)当m=2时,求点B的坐标;
(2)求DE的长?
(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以A,B,D,P为顶点的四边形是平行四边形?

查看答案和解析>>

同步练习册答案