精英家教网 > 初中数学 > 题目详情
如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥BD交AB于点E,设⊙O是△BDE的外接圆.

(1)求证:AC是⊙O的切线;
(2)求证:.
26:(1)说明∠ODC=90度∵OD是⊙O的半径,∴AC是⊙O的切线. (2)说明△EDB相似于△DCB即可。

试题分析:(1)证明:连接OD,∵DE⊥DB,⊙O是△BDE的外接圆,
∴BE是直径,点O是BE的中点,
∵∠C=90°,∴∠DBC+∠BDC=90°,又BD为∠ABC的平分线,∴∠ABD=∠DBC,
∵OB=OD,∴∠ABD=∠ODB,则∠ODB+∠BDC=90°即∠ODC=90°
又∵OD是⊙O的半径,∴AC是⊙O的切线.
(2)依题意知,Rt△EDB和Rt△DCB中,∠EDB=∠C=90°。因为DB平分∠ABC,所以∠ABD=∠DBC。
所以Rt△EDB∽Rt△DCB。则所以可得
点评:本题难度中等,主要考查学生对圆与相似三角形性质知识点的掌握,为中考常考题型,注意数形结合应用。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

小敏在作⊙O的内接正五边形时,先做了如下几个步骤:
(1)作⊙O的两条互相垂直的直径,再作OA的垂直平分线交OA于点M,如图1;
(2)以M为圆心,BM长为半径作圆弧,交CA于点D,连结BD,如图2.若⊙O的半径为1,则由以上作图得到的关于正五边形边长BD的等式是
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知⊙O1与⊙O2两圆半径分别为2和6,且圆心距为7,则两圆的位置关系是_____.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知点P是半径为5 的⊙O内的一点,且OP=3,则过点P的所有⊙O的弦中,最短的弦长等于(  ).
A.4B.6C.8D.10

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,C是AB延长线上一点,点D在⊙O上,且∠A=30°,∠ABD=2∠BDC .

(1)求证:CD是⊙O的切线;
(2)过点O作OF∥AD,分别交BD、CD于点E、F.若OB =2,求 OE和CF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB是⊙O的弦,OC⊥AB,垂足为C.若AB=2,OC=1,则OB的长为 .?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为优弧ABO上的一点(不与O、A两点重合),则cosC的值为

A.              B.             C.            D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连接DE、OE.

(1)判断DE与⊙O的位置关系并说明理由;    
(2)求证:
(3)若tanC=,DE=2,求AD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°, CD=2,则阴影部分图形的面积为       

查看答案和解析>>

同步练习册答案