精英家教网 > 初中数学 > 题目详情
新年晚会是我们最快乐的时候.会场上,悬挂着五彩缤纷的小装饰,其中有各种各样的立体图形,多面体是其中的一部分,多面体中围成立体图形的每一个面都是平面,没有曲面,如棱柱、棱锥等多面体,如图

请你数一下图中每一个多面体具有的顶点数(V)、棱数(E)和面数(F),并把结果记入下表中,你会发现什么规律?
多面体 顶点数(V) 面数(F) 棱数(E) V+F-E
正四面体
正方体
正八面体
正十二面体
分析:根据实际图形即可填表,然后根据所填的数据即可写出规律.
解答:解:填表如下:
多面体 顶点数(y) 面数(F) 棱数(E) V+F-E
正四面体 4 4 6 4+4-6=2
正方体 8 6 12 8+6-12=2
正八面体 6 8 12 6+8-12=2
正十二面体 20 12 30 20+12-30=2
规律:顶点数+面数-棱数=2.
点评:考查了欧拉公式,一般地,对于任意多面体来说,有:顶点数+面数-棱数=2,这个关系式是伟大的数学家欧拉得出的,被称为欧拉公式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

新年晚会是我们最快乐的时候.会场上,悬挂着五彩缤纷的小装饰,其中有各种各样的立体图形,多面体是其中的一部分,多面体中围成立体图形的每一个面都是平面,没有曲面,如棱柱、棱锥等多面体,如图

请你数一下图中每一个多面体具有的顶点数(V)、棱数(E)和面数(F),并把结果记入下表中,你会发现什么规律?
多面体顶点数(V)面数(F)棱数(E)V+F-E
正四面体
正方体
正八面体
正十二面体

查看答案和解析>>

同步练习册答案