精英家教网 > 初中数学 > 题目详情
德国著名数学家高斯(Gauss)在上小学时就已求出计算公式1+2+3+…+n=
n(n+1)
2

这个公式可以用一种叫做“交叉消项求和法”的方法推导如下:
在“平方公式”(a+b)2=a2+2ab+b2中,
取b=1,得2a+1=(a+1)2-a2.…(*)
在(*)中分别取a=1,2,3,…,n,再左右分别相加,得2(1+2+3+…+n)+n×1=(22-12)+(32-22)+(42-32)+…+[n2-(n-1)2]+[(n+1)2-n2]=(n+1)2-1=n2+2n.
1+2+3+…+n=
n(n+1)
2
.现在请你利用“立方公式”(a+b)3=a3+3a2b+3ab2+b3来推导12+22+32+…+n2的计算公式,要求写出推算过程.注:可以利用已推导的公式1+2+3+…+n=
n(n+1)
2
分析:先在立方公式中,取b=1,那么(a+1)3-a3=3a2+3a+1,再让a=1,2,3,…,n-1,n得23-1=3×12+3×1+1,33-23=3×22+3×2+1,43-33=3×32+3×3+1,…,(n+1)3-n3=3×n2+3n+1,再把这些式子相加可得(n+1)3-1=3(12+22+32+…+n2)+3(1+2+3+…+n)+n,从而可证12+22+32+…+n2=
(n+1)3-1-3(1+2+3+…+n)-n
3
=
n(n+1)(2n+1)
6
解答:解:在立方公式中,取b=1得(a+1)3-a3=3a2+3a+1,
依次取a=1,2,3,…,n-1,n得
23-1=3×12+3×1+1,33-23=3×22+3×2+1,43-33=3×32+3×3+1,…(n+1)3-n3=3×n2+3n+1,
将以上n个式子相加,得(n+1)3-1=3(12+22+32+…+n2)+3(1+2+3+…+n)+n,
∴12+22+32+…+n2=
(n+1)3-1-3(1+2+3+…+n)-n
3
=
n(n+1)(2n+1)
6
点评:本题考查了立方公式.在证明过程中可仿照平方公式的证明方法,注意先对立方公式进行变形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

德国著名数学家高斯(Gauss)在上小学时就已求出计算公式1+2+3+…+n=
n(n+1)
2

这个公式可以用一种叫做“交叉消项求和法”的方法推导如下:
在“平方公式”(a+b)2=a2+2ab+b2中,
取b=1,得2a+1=(a+1)2-a2.…(*)
在(*)中分别取a=1,2,3,…,n,再左右分别相加,得2(1+2+3+…+n)+n×1=(22-12)+(32-22)+(42-32)+…+[n2-(n-1)2]+[(n+1)2-n2]=(n+1)2-1=n2+2n.
1+2+3+…+n=
n(n+1)
2
.现在请你利用“立方公式”(a+b)3=a3+3a2b+3ab2+b3来推导12+22+32+…+n2的计算公式,要求写出推算过程.注:可以利用已推导的公式1+2+3+…+n=
n(n+1)
2

查看答案和解析>>

同步练习册答案