分析 先利用正方形的面积得到直角三角形的斜边的平方为13,则a2+b2=13,则利用大正方形的面积减去小正方形的面积等于四个直角三角形的面积得到2ab=12,所以(a+b)2=a2+2ab+b2=25.
解答 解:∵大正方形的面积是13,小正方形的面积是1,
∴直角三角形的斜边的平方为13,
∵直角三角形较短的直角边为a,较长的直角边为b,
∴a2+b2=13,
∵大正方形的面积减去小正方形的面积等于四个直角三角形的面积,
∴4×$\frac{1}{2}$ab=13-1,即2ab=12,
∴(a+b)2=a2+2ab+b2=13+12=25.
点评 本题考查了勾股定理的证明:勾股定理的证明方法有很多种,教材是采用了拼图的方法证明的.先利用拼图的方法,然后再利用面积相等证明勾股定理.证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com