精英家教网 > 初中数学 > 题目详情
2.在一个口袋中有4个完全相同的小球,把它们分别标号1、2、3、4.小明先随机地摸出一个小球,小强再随机地摸出一个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时小明获胜,否则小强获胜.
(1)若小明摸出的球不放回,求小明获胜的概率.
(2)若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.

分析 (1)首先根据题意画出树状图,由树状图求得所有等可能的结果与小明获胜的情况,继而利用概率公式即可求得答案;
(2)首先根据题意画出树状图,由树状图求得所有等可能的结果与小明、小强获胜的情况,继而利用概率公式求得其概率,比较概率,则可得到他们制定的游戏规则是否公平,注意此题属于放回实验.

解答 解:(1)根据题意列树形图如下:

∵共有12种等可能的结果,小明获胜的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共6种情况,
∴小明获胜的概率为$\frac{6}{12}$=$\frac{1}{2}$;

(2)画树状图得:

∵共有16种等可能的结果,其中符合x>y的有6种,
共有16种等可能的结果,∴P小明=$\frac{6}{16}$=$\frac{3}{8}$,P小强=$\frac{10}{16}$=$\frac{5}{8}$,
∵$\frac{3}{8}$≠$\frac{5}{8}$,
∴不公平.

点评 本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平;用到的知识点为:概率=所求情况数与总情况数之比.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.某书店准备购进甲、乙两种图书共100本,购书款不高于2224元,预这100本图书全部售完的利润不低于1100元,两种图书的进价、售价如表所示:
  甲种图书 乙种图书
 进价(元/本) 16 28
 售价(元/本) 26 40
请回答下列问题:
(1)书店有多少种进书方案?
(2)在这批图书全部售出的条件下,(1)中的哪种方案利润最大?最大利润是多少?(请你用所学的函数知识来解决)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.在一个不透明的口袋里装有四个小球,球面上分别标有数字-2、0、1、2,它们除数字不同外没有任何区别,每次实验先搅拌均匀.
(1)从中任取一球,求抽取的数字为负数的概率;
(2)从中任取一球,将球上的数字记为x(不放回);再任取一球,将球上的数字记为y,试用画树状图(或列表法)表示所有可能出现的结果,并求“x+y>0”的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.
如:①用配方法分解因式:a2+6a+8,
解:原式=a2+6a+8+1-1=a2+6a+9-1=(a+2)(a-4)
②M=a2-2ab+2b2-2b+2,利用配方法求M的最小值,
解:a2-2ab+2b2-2b+2=a2-2ab+b2+b2-2b+1+1=(a-b)2+(b-1)2+1
∵(a-b)2≥0,(b-1)2≥0
∴当a=b=1时,M有最小值1.
请根据上述材料解决下列问题:
(1)在横线上添加一个常数,使之成为完全平方式:x2-$\frac{2}{3}$x+$\frac{1}{9}$.
(2)用配方法因式分解:x2-4xy+3y2
(3)若M=$\frac{1}{4}$x2+2x-1,求M的最小值.
(4)已知x2+2y2+z2-2xy-2y-4z+5=0,则x+y+z的值为4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,在直角坐标系中,平行四边形ABCD的顶点A(0,2)、B(1,0)在x轴、y轴上,另两个顶点C、D在第一象限内,且AD=3AB.若反比例函数$y=\frac{k}{x}$(k>0)的图象经过C,D两点,则k的值是24.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.甲,乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的三个数值为-7,-1,3.乙袋中的三张卡片上所标的数值为-2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出的卡片上的数值,把x,y分别作为点A的横坐标和纵坐标.
(1)用适当的方法写出点A(x,y)的所有情况;
(2)求点A落在反比例函数y=-$\frac{6}{x}$图象上的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如果两个一次函数y=k1x+b1和y=k2x+b2满足k1=k2,b1≠b2,那么称这两个一次函数为“平行一次函数”.
如图,已知函数y=-2x+4的图象与x轴、y轴分别交于A、B两点,一次函数y=kx+b与y=-2x+4是“平行一次函数”
(1)若函数y=kx+b的图象过点(3,1),求b的值;
(2)若函数y=kx+b的图象与两坐标轴围成的三角形和△AOB构成位似图形,位似中心为原点,位似比为1:2,求函数y=kx+b的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是(  )
A.40cmB.50cmC.60cmD.80cm

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.某件商品原价为100元,经过两次促销降价后的价格为64元,如果连续两次降价的百分率相同,那么这件商品降价的百分率是20%.

查看答案和解析>>

同步练习册答案