精英家教网 > 初中数学 > 题目详情
5.如图,四边形ABCD是矩形,将一块正方形纸板OEFG如图1摆放,它的顶点O与矩形ABCD的对角线交点重合,点A在正方形的边OG上,现将正方形绕点O逆时针旋转,当点B在OG边上时,停止旋转,在旋转过程中OG交AB于点M,OE交AD于点N.
(1)开始旋转前,即在图1中,连接NC.
①求证:NC=NA(M);
②若图1中NA(M)=4,DN=2,请求出线段CD的长度.
(2)在图2(点B在OG上)中,请问DN、AN、CD这三条线段之间有什么数量关系?写出结论,并说明理由.
(3)试探究图3中AN、DN、AM、BM这四条线段之间有什么数量关系?写出结论,并说明理由.

分析 (1)①由矩形的对角线互相平分和正方形的内角都是直角,用线段垂直平分线上的点到两端点的距离相等,②用勾股定理计算即可;
(2)和(1)一样得到NB=ND,在用勾股定理即可;
(3)先判断出BM=DH,再和前两个一样,得出MN=NH,再用勾股定理即可.

解答 解:(1)①∵四边形ABCD是矩形,
∴OA=OC,
∵四边形EFGO为正方形,
∴∠EOG=90°,
∴NC=NA;
②由①得,NA=NC=4,DN=2,
根据勾股定理得CD2=NC2-ND2
∴CD=$\sqrt{16-4}$=2$\sqrt{3}$;
(2)结论:NB2=NA2+CD2
如图1,

连接NB,
∵四边形ABCD是矩形,
∴OB=OD,AB=CD,
∵四边形EFGO为正方形,
∴∠EOG=90°,
∴ND=NB;
根据勾股定理得,NB2=NA2+AB2=NA2+CD2
(3)结论AN2+AM2=DN2+BM2
如图2,

延长GO交CD于H,连接MN,HN,
∵四边形ABCD是矩形,
∴OB=OD,∠OBM=∠ODH,
∵∠BOM=∠DOH,
∴△BOM≌△DOH,
∴BM=DH,OM=OH
∵四边形EFGO是正方形,
∴∠EOG=90°,
∴MN=MH,在Rt△NDH中,
NH2=DN2+DH2=DN2+BM2
在Rt△AMN中,MN2=AM2+AN2
∴DN2+BM2=AM2+AN2

点评 此题是四边形综合题,主要考查了正方形和矩形的性质,勾股定理,线段垂直平分线的性质,解本题的关键是线段垂直平分线的性质定理得应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.(1)计算:|-4|×($\sqrt{3}$-1)0-2
(2)解不等式:3x>2(x+1)-1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.反比例函数y=$\frac{1-6t}{x}$的图象与直线y=-x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是(  )
A.t<$\frac{1}{6}$B.t>$\frac{1}{6}$C.t≤$\frac{1}{6}$D.t≥$\frac{1}{6}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列四个几何体中,左视图为圆的几何体是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.
(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m的值为2;
(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.请阅读下列材料:

问题:如图1,△ABC中,∠ACB=90°,AC=BC,MN是过点A的直线,DB⊥MN于点D,联结CD.求证:BD+AD=$\sqrt{2}$CD.
小明的思考过程如下:要证BD+AD=$\sqrt{2}$CD,需要将BD,AD转化到同一条直线上,可以在MN上截取AE=BD,并联结EC,可证△ACE和△BCD全等,得到CE=CD,且∠ACE=∠BCD,由此推出△CDE为等腰直角三角形,可知DE=$\sqrt{2}$CD,于是结论得证.
小聪的思考过程如下:要证BD+AD=$\sqrt{2}$CD,需要构造以CD为腰的等腰直角三角形,可以过点C作CE⊥CD交MN于点E,可证△ACE和△BCD全等,得到CE=CD,且AE=BD,由此推出△CDE为等腰直角三角形,可知DE=$\sqrt{2}$CD,于是结论得证.
请你参考小明或小聪的思考过程解决下面的问题:
(1)将图1中的直线MN绕点A旋转到图2和图3的两种位置时,其它条件不变,猜想BD,AD,CD之间的数量关系,并选择其中一个图形加以证明;
(2)在直线MN绕点A旋转的过程中,当∠BCD=30°,BD=$\sqrt{2}$时,求CD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.若y=$\frac{\sqrt{x-4}+\sqrt{4-x}}{2}+2$,则(x-y)y=4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.叙述三角形内角和定理并将证明过程填写完整.
定理:三角形内角和是180°.
已知:△ABC.求证:∠A+∠B+∠C=180°.
证明:作边BC的延长线CD,过C点作CE∥AB.
∴∠1=∠A两直线平行,内错角相等,
∠2=∠B两直线平行,同位角相等,
∵∠ACB+∠1+∠2=180°平角的定义,
∴∠A+∠B+∠ACB=180°等量代换.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.(1)计算:$\sqrt{27}$-2cos30°+($\frac{1}{2}$)-2-|1-$\sqrt{3}$|.
(2)解不等式组:$\left\{\begin{array}{l}{-3(x+1)-(x-3)<8}\\{\frac{2x+1}{3}-\frac{1-x}{2}≤1}\end{array}\right.$并在数轴上把解集表示出来.

查看答案和解析>>

同步练习册答案