精英家教网 > 初中数学 > 题目详情
精英家教网如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE的中点,BF⊥BC交CM的延长线于点F,BD=2,CD=1.下列结论:
①∠AED=∠ADC;②
DE
DA
=
1
2
;③AC•BE=2;④BF=2AC;⑤BE=DE
其中结论正确的个数有(  )
A、1个B、2个C、3个D、4个
分析:①∠AED=90°-∠EAD,∠ADC=90°-∠DAC,∠EAD=∠DAC;
②易证△ADE∽△ACD,得DE:DA=DC:AC=1:AC,AC不一定等于2;
③当FC⊥AB时成立;
④连接DM,可证DM∥BF∥AC,得FM:MC=BD:DC=4:3;易证△FMB∽△CMA,得比例线段求解;
⑤BE=DE成立.由④可知BM:MA=BF:AC=2:1,而BD:DC=2:1,可知DM∥AC,DM⊥BC,利用直角三角形斜边上的中线的性质判断.
解答:解:①∠AED=90°-∠EAD,∠ADC=90°-∠DAC,
∵∠EAD=∠DAC,
∴∠AED=∠ADC.
故本选项正确;
②∵∠EAD=∠DAC,∠ADE=∠ACD=90°,
∴△ADE∽△ACD,得DE:DA=DC:AC=3:AC,但AC的值未知,
故不一定正确;
③由①知∠AED=∠ADC,
∴∠BED=∠BDA,
又∵∠DBE=∠ABD,
∴△BED∽△BDA,
∴DE:DA=BE:BD,由②知DE:DA=DC:AC,
∴BE:BD=DC:AC,
∴AC•BE=BD•DC=2.
故本选项正确;
④连接DM.
在Rt△ADE中,MD为斜边AE的中线,则DM=MA.
∴∠MDA=∠MAD=∠DAC,
∴DM∥BF∥AC,
由DM∥BF得FM:MC=BD:DC=2:1;
由BF∥AC得△FMB∽△CMA,有BF:AC=FM:MC=2:1,
∴BF=2AC.
故本选项正确
⑤由④可知BM:MA=BF:AC=2:1,精英家教网
∵BD:DC=2:1,∴DM∥AC,DM⊥BC,
∴∠MDA=∠DAC=∠DAM,而∠ADE=90°,
∴DM=MA=ME,在Rt△BDM中,由BM=2AM可知BE=EM,
∴ED=BE.故⑤正确.
综上所述,①③④⑤正确,共有4个.
故选D.
点评:此题重点考查相似三角形的判定和性质,综合性强,有一定难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形.(保留作图痕迹,不要求写作法和证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC点边上一点,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的长(2)求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,则CD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半径;
(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的长.

查看答案和解析>>

同步练习册答案