【题目】为了了解重庆市的空气质量情况,我校初2017级“综合实践环境调查”小组从环境监测网随机抽取了若干天的空气质量作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出):
(1)课题小组随机抽取的天数为_______天,请将条形统计图补充完整;
(2)为找出优化环境的措施,“环境治理研讨小组”的同学欲从天气质量为“中度污染”和“重度污染”的样本中随机抽取两天分析污染原因,请用列表或画树状图的方法求出所抽取的两天恰好都是“重度污染”的概率.
【答案】(1)60,图形略;(2)
【解析】分析:(1)根据天气为“优”的天数有12天,所占的百分比为20%,可求抽取的天数,分别求出轻度和轻微的天数则可补全条形图;(2)用列表法求概率.
详解:(1)课题小组随机抽取的天数为12÷20%=60天,则轻度污染的天数为60×5%=3天,轻微污染的天数为60-12-36-3-2-2=5天,条形图补充如下:
(2)根据题意,列表:
中度1 | 中度2 | 重度1 | 重度2 | |
中度1 | 中度1,中度2 | 中度1,重度1 | 中度1,重度2 | |
中度2 | 中度2,中度1 | 中度2,重度1 | 中度2,重度2 | |
重度1 | 重度1,中度1 | 重度1,中度2 | 重度1,重度2 | |
重度2 | 重度2,中度1 | 重度2,中度2 | 重度2,重度1 |
由表可知,共有12种等可能性,其中符合条件的有2种,
所以P(两天恰好都是“重度污染”)=.
科目:初中数学 来源: 题型:
【题目】综合与探究:
如图,抛物线y=x2﹣x﹣4与x轴交与A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.
(1)求点A,B,C的坐标.
(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.
(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】自中央出台“厉行节约、反对浪费”八项规定后,某品牌高档酒销量锐减,进入四月份后,经销商为扩大销量,每瓶酒比三月份降价500元,如果卖出相同数量的高档酒,三月份销售额为4.5万元,四月份销售额只有3万元.
(1)求三月份每瓶高档酒售价为多少元?
(2)为了提高利润,该经销商计划五月份购进部分大众化的中低档酒销售.已知高档酒每瓶进价为800元,中低档酒每瓶进价为400元.现用不超过5.5万元的预算资金购进,两种酒共100瓶,且高档酒至少购进35瓶,请计算说明有几种进货方案?
(3)该商场计划五月对高档酒进行促销活动,决定在四月售价基础上每售出一瓶高档酒再送顾客价值元的代金券,而中低档酒销售价为550元/瓶.要使(2)中所有方案获利恰好相同,请确定的值,并说明此时哪种方案对经销商更有利?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东,跑回到自己家.
(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;
(2)求小彬家与学校之间的距离;
(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,圆的半径为个单位长度.数轴上每个数字之间的距离为1个单位长度,在圆的4等分点处分别标上点A,B,C,D.先让圆周上的点A与数轴上表示-1的点重合.
(1)圆的周长为多少?
(2)若该圆在数轴上向右滚动2周后,则与点A重合的点表示的数为多少?
(3)若将数轴按照顺时针方向绕在该圆上,(如数轴上表示-2的点与点B重合,数轴上表示-3的点与点C重合…),那么数轴上表示-2018的点与圆周上哪个点重合?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:OE=OF;
(2)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”.中国是发现和研究勾股定理最古老的国家之一.中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理.三国时期吴国赵爽创制了“勾股圆方图”(如图)证明了勾股定理.在这幅“勾股圆方图”中,大正方形ABCD是由4个全等的直角三角形再加上中间的那个小正方形EFGH组成的.若小正方形的边长是1,每个直角三角形的短的直角边长是3,则大正方形ABCD的面积是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一面靠墙的空地上,用长为24米的篱笆围成中间隔有二道篱笆的长方形花圃,从设计的美观角度出发,墙的最小可用长度为4米,墙的最大可用长度为14米.
(1)若所围成的花圃的面积为32平方米,求花圃的宽AB的长度;
(2)当AB的长为 时,所围成的花圃面积最大,最大值为 米2;当AB的长为 时,所围成的花圃面积最小,最小值为 米2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com