精英家教网 > 初中数学 > 题目详情
17.如图,在△ABC中,∠BAC=45°,AB=AC,点D是BC的中点,点E在AD上.
(1)求证:BE=CE;
(2)如图2,延长BE交AC于点F,且BF⊥AC,垂足为F.
①求证:△AEF≌△BCF;
②连接DF,DF与AE有怎样的数量关系?证明你的结论.

分析 (1)根据等腰三角形的性质就可以求出∠BAE=∠CAE,再证明△ABE≌△ACE就可以得出结论;
(2)①由BF⊥AC,∠BAC=45°得出AF=BF,再由条件证明△AEF≌△BCF即可.
②利用直角三角形斜边的中线等于斜边的一半,得出DF=$\frac{1}{2}$BC,再借助①的结论即可.

解答 证明:(1)∵AB=AC,D是BC的中点,
∴∠EAB=∠EAC,
在△ABE和△ACE中,$\left\{\begin{array}{l}{AB=AC}\\{∠EAB=∠EAC}\\{AE=AE}\end{array}\right.$,
∴△ABE≌△ACE(SAS),
∴BE=CE;

(2)∵BF⊥AF,
∴∠AFB=∠CFB=90°.
∵∠BAC=45°,
∴∠ABF=45°,
∴∠ABF=∠BAC,
∴AF=BF.
∵AB=AC,点D是BC的中点,
∴AD⊥BC,
∴∠EAF+∠C=90°,
∵BF⊥AC,
∴∠CBF+∠C=90°,
∴∠EAF=∠CBF,
在△AEF和△BCF中,$\left\{\begin{array}{l}{∠EAF=∠CBF}\\{AF=BF}\\{∠AEF=∠BFC}\end{array}\right.$,
∴△AEF≌△BCF(ASA)
②DF=$\frac{1}{2}$AE,
理由:如图,
连接DF,
由①知,△AEF≌△BCF,
∴AE=BC,
在Rt△BCF中,点D是BC中点,
∴DF=$\frac{1}{2}$BC,
∴DF=$\frac{1}{2}$AE.

点评 此题是三角形综合题,主要考查了中点的性质的运用,全等三角形的判定性质的运用,等腰三角形的判定及性质的运用,直角三角形斜边的中线等于斜边的一半,解答时证明三角形全等是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.某校九(1)班所有学生参加2015年初中毕业生体育考试,根据测试评分标准,将他们的体育成绩进行统计后分为A,B,C,D四个等级,并绘制成如图所示的不完全的条形统计图和扇形统计.
根据图中所给信息,解答下列问题:
(1)九(1)班参加体育测试的学生有多少人?
(2)等级B部分所占的圆心角的度数;
(3)将条形统计图补充完整;
(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,BC∥B1C1,CD∥C1D1,DE∥D1E1,∠BCD=118°,∠CDE=119°,求∠B1C1D1及∠C1D1E1的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.问题提出:(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE,即∠NMC=∠MAE.
(下面请你完成余下的证明过程)
问题探究:(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
解决问题:(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,请你作出猜想:当∠AMN=$\frac{(n-2)180°}{n}$时,结论AM=MN仍然成立.(直接写出答案,不需要证明)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.解方程:
(1)2(x-1)+1=0;
(2)$\frac{1}{3}$x-1=$\frac{x-3}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.解方程
(1)(x-2)2=3(x-2).
(2)x2-5x-4=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.计算:-$\root{3}{-8}$+$\root{3}{125}$-$\root{3}{-1}$-$\sqrt{(-2)^{2}}$+$\root{3}{(-3)^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.某市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求到明年年底控制电动车拥有量不超过11.9万辆,如果每年底报废的电动车数量是上一年年底电动车拥有量的10%,且每年新增电动车数量相同,问:从今年年初起每年新增电动车数量最多是多少万辆?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.下列说法正确的是(  )
A.正整数和负整数统称为整数
B.若|a|=|b|,则a=b
C.不相等的两个数的绝对值一定不相等
D.数轴上表示数a的点与表示数-a的点到原点的距离相等

查看答案和解析>>

同步练习册答案