精英家教网 > 初中数学 > 题目详情

图中图(1)是一个10×10格点正方形组成的网格.△ABC是格点三角形(顶点在网格交点处),请你完成下面的两个问题:

(1)在图(1)中画出与△ABC相似的格点△A1B1C1和△A2B2C2,且△A1B1C1与△ABC的相似比是2,△A2B2C2与△ABC的相似比是

(2)在图(2)中用与△ABC、△A1B1C1、△A2B2C2全等的格点三角形(每个三角形至少使用一次),拼出一个你熟悉的图案,并为你设计的图案配一句贴切的解说词.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:
问题:现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形,要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.
小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得x=
5
,由此可知新正方形得边长等于两个小正方形组成得矩形对角线得长,于是,画出如图②所示的分割线,拼出如图③所示的新正方形.精英家教网
请你参考小东同学的做法,解决如下问题:
现有10个边长为1的正方形,排列形式如图④,请把它们分割后拼接成一个新的正方形,要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.(说明:直接画出图形,不要求写分析过程.)

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)在2004年6月的日历中(见图),任意圈出一竖列上相邻的三个数,设中间的一个为a,则用含a的代数式表示这三个数(从小到大排列)分别是
 

(2)连续的自然数1至2004按图中的方式派成一个长方形阵列,用一个正方形框出16个数(如图)
①图中框出的这16个数之和是
 

②在上图中,要使一个正方形框出的16个数之和分别等于2000、2004,是否可能?若不可能,试说明理由.若有可能,请求出该正方形框出的16个数中的最小数与最大数.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

27、我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1是由△A复制出△A1,又由△A1复制出△A2,再由△A2复制出△A3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,由复制形成的多边形中的任意两个小三角形(指与△A全等的三角形)之间既无缝隙也无重叠.
(1)图1中标出的是一种可能的复制结果,它用到
1
次平移,
2
次旋转.小明发现△B∽△A,其相似比为
2:1
.若由复制形成的△C的一条边上有11个小三角形(指有一条边在该边上的小三角形),则△C中含有
121
个小三角形;
(2)若△A是正三角形,你认为通过复制能形成的正多边形是
正三边形、正六边形

(3)在复制形成四边形的过程中,小明用到了两次平移一次旋转,你能用两次旋转一次平移复制形成一个四边形吗?如果能,请在图2的方框内画出草图,并仿照图1作出标记;如果不能,请说明理由;
(4)图3是正五边形EFGHI,其中心是O,连接O点与各顶点.将其中的一个三角形记为△A,小明认为正五边形EFGHI是由复制形成的一种结果,你认为他的说法对吗?请判断并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网(1)求值:
8
-8×
1
2
+(-
1
2
)-2

(2)在正方形方格纸中,我们把顶点都在“格点”上的三角形称为“格点三角形”,如图,△ABC是一个格点三角形.
①请你在所给的方格纸中,以O为位似中心,将△ABC放大为原来的2倍,得到一个△A1B1C1
②若每一个方格的面积为1,则△A1B1C1的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

写出下列事件发生的可能性,并标在图中的大致位置上.
(1)袋中有10个红球,摸到红球;
(2)袋中有10个红球,摸到白球;
(3)从一副混合均匀的扑克牌中(除去大、小.从中任意抽取一张,这一张恰好是A;
(4)一个布袋中有2个黑球和2个白球,从中任意摸出一个球,恰好是黑球;
(5)任意掷出一个质地均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),朝上一面的数字大于2.

查看答案和解析>>

同步练习册答案