【题目】如图,已知AB∥CD,CE、AE分别平分、,则= ( )
A.
B.
C.
D.
【答案】B
【解析】
由AB∥CD,根据两直线平行,同旁内角互补,可得∠BAC+∠ACD=180°,又由CE、AE分别平分∠ACD、∠CAB,可得,,则可求得∠1+∠2的度数.
∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵CE、AE分别平分∠ACD、∠CAB,
∴,,
∴.
故选B.
【考点精析】通过灵活运用平行线的性质和三角形的内角和外角,掌握两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角即可以解答此题.
科目:初中数学 来源: 题型:
【题目】凤凰古城门票事件后,游客相比以往大幅减少,滨江某旅行社为吸引市民组团去旅游,推出了如下收费标准:
某单位组织员工去凤凰古城旅游,共支付给该旅行社旅游费用27000元,请问该单位这次共有多少员工去凤凰古城旅游?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后,折痕DE分别交AB,AC于点E、G,连接GF,有下列结论:
①∠AGD=112.5°;②tan∠AED=+1;③四边形AEFG是菱形;④S△ACD=S△OCD.其中正确结论的序号是__.(把所有正确结论的序号都填在横线上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(8分)为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:
(1)求这15辆车中大小货车各多少辆?
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.
(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列式子中一定相等的是( )
A.(a﹣b)2=a2+b2
B.a2+b2=(a+b)2
C.(a﹣b)2=b2﹣2ab+a2
D.(a+b)(a2﹣ab+b2)=a3﹣b3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com