精英家教网 > 初中数学 > 题目详情

已知如图四边形ABCD中,AC⊥BD于O,OA>OC,OB>OD.求证:BC+AD>AB+CD.

答案:
解析:

  证明:∵OA>OC  OB>OD  连结交于E

  在OA上取,使=OC

  在DB上取,使=OD

  又  AC⊥BD于O

  ∴△OCD≌△

  ∴CD=

  BD垂直平分

  ∴BC=

  同理  AD=

  

  EA+EB>AB

  ∴+EA+EB>AB+

  ∴>AB+

  BC+AD>AB+CD


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知如图,△ABC中BC=60cm,高AD=40cm,四边形PQMN是矩形,点P在AB边上,点Q、M在BC边上,点N在AC边上.
(1)若PQ:PN=1:3.求矩形的各边长.
(2)设PN=x,PQ=y,求y与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,△ABC中,AC=BC,BC与x轴平行,点A在x轴上,点C在y轴上,抛物线y=ax2-5ax+4经精英家教网过△ABC的三个顶点,
(1)求出该抛物线的解析式;
(2)若直线y=kx+7将四边形ACBD面积平分,求此直线的解析式;
(3)若直线y=kx+b将四边形ACBD的周长和面积同时分成相等的两部分,请你确定y=kx+b中k的取值范围.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•通州区一模)已知如图,△ABC和△DCE都是等边三角形,若△ABC的边长为1,则△BAE的面积是
3
4
3
4

四边形ABCD和四边形BEFG都是正方形,若正方形ABCD的边长为4,则△FAC的面积是
8
8


如果两个正多边形ABCDE…和BPKGY…是正n(n≥3)边形,正多边形ABCDE …的边长是2a,则△KCA的面积是
2a2sin
360°
n
或(4a2•sin
90°(n-2)
n
×cos
90°(n-2)
n
2a2sin
360°
n
或(4a2•sin
90°(n-2)
n
×cos
90°(n-2)
n
.(结果用含有a、n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形AOCP.其中正确的有(  )个.

查看答案和解析>>

科目:初中数学 来源:2011年北京市通州区中考数学一模试卷(解析版) 题型:解答题

已知如图,△ABC中,AC=BC,BC与x轴平行,点A在x轴上,点C在y轴上,抛物线y=ax2-5ax+4经过△ABC的三个顶点,
(1)求出该抛物线的解析式;
(2)若直线y=kx+7将四边形ACBD面积平分,求此直线的解析式;
(3)若直线y=kx+b将四边形ACBD的周长和面积同时分成相等的两部分,请你确定y=kx+b中k的取值范围.(直接写出答案)

查看答案和解析>>

同步练习册答案