精英家教网 > 初中数学 > 题目详情
6.如图是建筑大师梁思成先生所做的“清代北平西山碧云寺金刚宝座塔”手绘建筑图.1925年孙中山先生在北京病逝后,他的衣帽被封存于此塔内,因此也被称为“孙中山先生衣冠冢”.在图中所示的俯视图的示意图中建立如图所示的平面直角坐标系,其中的小正方形网格的宽度为1,那么图中塔的外围左 上角处点C的坐标是(-2,5).

分析 直接利用已知坐标系结合C点位置进而得出答案.

解答 解:如图所示:可得C点坐标为:(-2,5).
故答案为:(-2,5).

点评 此题主要考查了坐标确定位置,正确利用坐标系得出C点位置是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

16.小强由甲地匀速步行到乙地后原路返回,小亮由甲地匀速步行经乙地到丙地后原路返回,两人同时出发,他们离乙地的路程S(km)与步行的时间t(h)间的函数关系如图所示,则下列说法中正确的个数有(  )
①甲、乙两地之间的路程为8km
②乙、丙两地之间的路程为2km
③小亮的平均速度为10千米/时
④小强的平均速度为4km/时.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.下列图形中,是中心对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,直线l1:y=-2x与直线l2:y=kx+b在同一平面直角坐标系内交于点P.
(1)直接写出不等式-2x>kx+b的解集x<3;
(2)设直线l2与x轴交于点A,△OAP的面积为12,求l2的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.阅读下面材料:
小伟遇到这样一个问题:如图1,在△ABC中,AB=AC,在边AB上取点E,在边AC上取点F,使BE=AF(E,F不是AB,AC边的中点),连结EF.求证:EF>$\frac{1}{2}$BC.
 
小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造全等三角形,再证明线段的关系.他先后尝试了翻折,旋转,平移的方法,发现通过平移可以解决这个问题.他的方法是过点C作CH∥BE,并截取CH=BE,连接EH,构造出平行四边形EBCH,再连接FH,进而证明△AEF≌△CFH,得到FE=FH,使问题得以解决(如图2).
(1)请回答:在证明△AEF≌△CFH时,CH=AF,∠HCF=∠A.
(2)参考小伟思考问题的方法,解决问题:
如图3,△ABC中,∠BAC=90°,AB=AC,延长CA到点D,延长AB到点E,使AD=BE,∠DEA=15°.
判断DE与BC的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在平面直角坐标系中,过点A(2,0)的直线l与y轴交于点B,tan∠OAB=$\frac{1}{2}$,直线l上的点P位于y轴左侧,且到y轴的距离为1.
(1)求直线l的表达式;
(2)若反比例函数y=$\frac{m}{x}$的图象经过点P,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图:在正方形网格中有一个格点三角形ABC,(即△ABC的各顶点都在格点上),按要求进行下列作图:
(1)画出△ABC中AB边上的高CD;(提醒:别忘了标注字母!)
(2)画出将△ABC先向右平移5格,再向上平移3格后的△A′B′C′;
(3)画一个锐角格点三角形MNP,使其面积等于△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,Rt△ABC中,∠C=90°,∠CAB=37°,AB=5,AC=4,BC=3,直线MN经过点C,交边AB于点D,分别过点A,B作AF⊥MN,BE⊥MN,垂足分别为点E,F,设线段BE,AF的长度分别为d1,d2
(1)求△ABC的面积;
(2)若直线MN从与CB重合位置开始顺时针绕着点C旋转,至与CA重合时停止,在旋转过程中,试求出d1+d2的最大值,并求出此时直线MN旋转角的度数(即∠BCD的度数).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知:如图,在8×12的矩形网格中,每个小正方形的边长都为1,四边形ABCD的顶点都在格点上.
(1)以B为坐标原点,AB所在直线为x轴,建立直角坐标系;
(2)写出四边形各顶点的坐标;
(3)计算四边形的面积;
(4)画出将四边形向右平移5个单位,向下平移2个单位得到的图形.

查看答案和解析>>

同步练习册答案