精英家教网 > 初中数学 > 题目详情
如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).

(1)求该二次函数的解析式;
(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为   
(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.
①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;
②请求出S关于t的函数关系式,并写出自变量t的取值范围;
③设S0是②中函数S的最大值,直接写出S0的值.
(1);(2)(,0);(3)①不存在,理由见试题解析;②;③

试题分析:(1)根据已知的与x轴的两个交点坐标和经过的一点利用交点式求二次函数的解析式即可;
(2)首先根据上题求得的函数的解析式确定顶点坐标,然后求得点C关于x轴的对称点的坐标C′,从而求得直线C′M的解析式,求得与x轴的交点坐标即可;
(3)(3)①如果DE∥OC,此时点D,E应分别在线段OA,CA上,先求出这个区间t的取值范围,然后根据平行线分线段成比例定理,求出此时t的值,然后看t的值是否符合此种情况下t的取值范围.如果符合则这个t的值就是所求的值,如果不符合,那么就说明不存在这样的t.
②本题要分三种情况进行讨论:当E在OC上,D在OA上,即当时,此时S=OE•OD,由此可得出关于S,t的函数关系式;
当E在CA上,D在OA上,即当时,此时S=OD×E点的纵坐标.由此可得出关于S,t的函数关系式;
当E,D都在CA上时,即当相遇时用的时间,此时S=SAOE﹣SAOD,由此可得出S,t的函数关系式;
综上所述,可得出不同的t的取值范围内,函数的不同表达式.
③根据②的函数即可得出S的最大值.
试题解析:(1)设二次函数的解析式为,∵图象过点(0,﹣8),∴,∴二次函数的解析式为
(2)∵=,∴点M的坐标为(2,),∵点C的坐标为(0,),∴点C关于x轴对称的点C′的坐标为(0,8),∴直线C′M的解析式为:,令,得,解得:,∴点K的坐标为(,0);
(3)①不存在PQ∥OC,
若PQ∥OC,则点P,Q分别在线段OA,CA上,此时,,∵PQ∥OC,∴△APQ∽△AOC,∴,∵AP=,AQ=,∴,∴,∵>2不满足;∴不存在PQ∥OC;
②分情况讨论如下,
情况1:

S=OP•OQ=
情况2:
作QE⊥OA,垂足为E,S=OP•EQ=
情况3:
作OF⊥AC,垂足为F,则OF=,S=QP•OF=

③当时,,函数的最大值是12;
时,,函数的最大值是
,函数的最大值为
∴S0的值为
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

将抛物线向下平移2个单位再向右平移3个单位,所得抛物线的表达式是            

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在矩形OABC中,点A(0,10),C(8,0).沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC, OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线经过O,D,C三点.

(1)求D的的坐标及抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?
(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与x轴交于A、B两点,与y轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线于点D(5,2),连结BC、AD.

(1)求C点的坐标及抛物线的解析式;(6分)
(2)将△BCH绕点B按顺时针旋转90°后再沿x轴对折得到△BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;(4分)
(3)设过点E的直线交AB边于点P,交CD边于点Q.问是否存在点P,使直线PQ分梯形ABCD的面积为1∶3两部分?若存在,求出P点坐标;若不存在,请说明理由. (4分)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知点A (2,4) 和点B (1,0)都在抛物线上.

(1)求m、n;
(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形A A′B′B为菱形,求平移后抛物线的表达式;
(3)记平移后抛物线的对称轴与直线AB′ 的交点为C,试在x轴上找一个点D,使得以点B′、C、D为顶点的三角形与△ABC相似.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线与直线交于点.点是抛物线上之间的一个动点,过点分别作轴、轴的平行线与直线交于点

(1)求抛物线的函数解析式;
(2)若点的横坐标为2,求的长;
(3)以为边构造矩形,设点的坐标为,求出之间的关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知(-3,m)、(1,m)是抛物线y=2x2+bx+3的两点,则b=____.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若x1,x2(x1<x2)是方程(x-a)(x-b)=1(a<b)的两个根,则实数x1,x2,a,b的大小关系为(    )
A.x1<x2<a<bB.x1<a<x2<bC.x1<a<b<x2D.a<x1<b<x2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,矩形纸片ABCD中,BC=4,AB=3,点P是BC边上的动点(点P不与点B、C重合).现将△PCD沿PD翻折,得到△PC’D;作∠BPC’的角平分线,交AB于点E.设BP=" x,BE=" y,则下列图象中,能表示y与x的函数关系的图象大致是(      )

A、 B、  C、 D、

查看答案和解析>>

同步练习册答案