精英家教网 > 初中数学 > 题目详情
在△ABC中,,那么△ABC是(    )
A.钝角三角形;B.直角三角形;C.锐角三角形;D.等腰三角形
A.

试题分析:先根据△ABC中,tanA=1,cotB=求出∠A及∠B的度数,再由三角形内角和定理求出∠C的度数,进而可判断出三角形的形状.
∵△ABC中,tanA=1,cotB=
∴∠A=45°,∠B=30°,
∴∠C=180°-∠A-∠B=180°-45°-30°=105°,
∴△ABC是钝角三角形.
故选A.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:计算题

计算:

查看答案和解析>>

科目:初中数学 来源:不详 题型:计算题

计算:

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某市正在进行商业街改造,商业街起点在古民居P的南偏西60°方向上的A处,现已改造至古民居P南偏西30°方向上的B处,A与B相距150 m,且B在A的正东方向。为不破坏古民居的风貌,按照有关规定,在古民居周围100 m以内不得修建现代化商业街.若工程队继续向正东方向修建200 m的商业街到C处,则对于从B到C的商业街改造是否违反有关规定?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,水面上有一浮标,在高于水面1米的地方观察,测得浮标顶的仰角30°,同时测得浮标在水中的倒影顶端俯角45°,观察时水面处于平静状态,求水面到浮标顶端的高度.(精确到0.1米)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某校数学课题学习小组在“测量教学楼高度”的活动中,设计了以下两种方案:
课题
测量教学楼高度
方案


 
图示


测得数据
CD=6.9m,∠ACG=22°,∠BCG=13°,
EF=10m,∠AEB=32°,∠AFB=43°
参考数据
sin22°≈0.37,cos22°≈0.93,
tan22°≈0.40
sin13°≈0.22,cos13°≈0.97
tan13°≈0.23
sin32°≈0.53,cos32°≈0.85,tan32°≈0.62
sin43°≈0.68,cos43°≈0.73,tan43°≈0.93
请你选择其中的一种方法,求教学楼的高度(结果保留整数)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知AB、CD分别表示两幢相距30m的大楼,小明的大楼AB的底部点B处观察,当仰角增大到30度时,恰好能够通过大楼CD的玻璃幕墙看到大楼AB的顶部点A的像,那么大楼AB的高度为(  )

(A);  (B);  (C);  (D)60米。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知都是锐角,如果,那么之间满足的关系是( )
A.B.°;C.°;D.°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在小山的东侧处有一热气球,以每分钟的速度沿着仰角为60°的方向上升,20 min后升到处,这时热气球上的人发现在的正西方向俯角为45°的处有一着火点,求热气球的升空点与着火点的距离(结果保留根号).

查看答案和解析>>

同步练习册答案