分析 连接OC、OD,根据直角三角形全等的判定定理证明Rt△COE≌Rt△DOF,根据圆心角、弧、弦的关系证明结论.
解答 解:$\widehat{AC}$与$\widehat{BD}$相等,
证明:连接OC、OD,
∵AE=BF,OA=OB,
∴OE=OF,
在Rt△COE和Rt△DOF中,
$\left\{\begin{array}{l}{OE=OF}\\{OC=OD}\end{array}\right.$,
∴Rt△COE≌Rt△DOF,
∴∠AOC=∠BOD,
∴$\widehat{AC}$=$\widehat{BD}$.
点评 本题考查的是圆心角、弧、弦的关系和全等三角形的判定与性质,掌握在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com