精英家教网 > 初中数学 > 题目详情
5.已知点A(m,m+1),B(m+3,m-1)是反比例函数y=$\frac{k}{x}$与一次函数y=ax+b的交点.
(1)求反比例函数与一次函数的解析式;
(2)请直接写出当反比例函数的函数值小于一次函数的函数值时,自变量x的取值范围.

分析 (1)点A(m,m+1),B(m+3,m-1)在反比例函数y=$\frac{k}{x}$上,得到m(m+1)=(m+3)(m-1)=k,解方程可求得m=3,于是A(3,4),B(6,2),再用待定系数法求出反比例函数解析式和一次函数的解析式;
(2)根据图象,分别观察交点的那一侧能够使一次函数的值大于反比例函数的值,从而求得x的取值范围.

解答 解:(1)∵点A(m,m+1),B(m+3,m-1)在反比例函数y=$\frac{k}{x}$上
∴m(m+1)=(m+3)(m-1),
∴m=3,
∴A(3,4),B(6,2),
∴y=$\frac{12}{x}$,
∵$\left\{\begin{array}{l}{3k+b=4}\\{6k+b=2}\end{array}\right.$,
∴$\left\{\begin{array}{l}{k=-\frac{2}{3}}\\{b=6}\end{array}\right.$,
∴y=-$\frac{2}{3}$x+6;
(2)由图象得:满足题意的x的取值范围为x<0或3<x<6.

点评 本题考查了反比例函数与一次函数的交点问题,待定系数法求函数解析式,要求学生能够熟练运用待定系数法求得函数的解析式;能够运用数形结合的思想观察两个函数值的大小关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.如图,二次函数y=-x2+bx+c的图象(抛物线)与x轴交于A(1,0),且当x=0和x=-2时所对应的函数值相等.
(1)求此二次函数的表达式;
(2)设抛物线与x轴的另一交点为点B,与y轴交于点C,在这条抛物线的对称轴上是否存在点D,使得△DAC的周长最小?如果存在,求出D点的坐标;如果不存在,请说明理由.
(3)设点M在第二象限,且在抛物线上,如果△MBC的面积最大,求此时点M的坐标及△MBC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,菱形ABCD的对角线AC、BD的长分别是6,2$\sqrt{3}$,如果用一个2倍放大镜看菱形ABCD,则∠BAD=60°,菱形ABCD的周长=16$\sqrt{3}$,面积=24$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在?ABCD中,E、F分别是边AB、CD的中点,BG∥AC交DA的延长线于点G.
(1)求证:△ADF≌△CBE;
(2)若四边形AGBC是矩形,判断四边形AECF是什么特殊的四边形?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,E、F分别是?ABCD的边BC、AD上的中点.
(1)求证:△ABE≌△CDF;
(2)当∠BAC=90° 时,四边形AECF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,已知反比例函数y=$\frac{k}{x}$(k>0)的图象与一次函数图象y=-x+4交于A、B两点,点A的纵坐标为3.
(1)求反比例函数的解析;
(2)y轴上是否存在一点P,使∠APB=$\frac{1}{2}$∠AOB?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.已知圆锥的高是4cm,圆锥的底面半径是3cm,则该圆锥的侧面积是15πcm2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,已知菱形OABC的顶点A在x轴的正半轴上,反比例函数y=$\frac{4}{x}$(x>0)的图象恰好经过点C,且与AB交于点D,若△OCD的面积为2$\sqrt{2}$,则点B的坐标为($2\sqrt{2}+2,2$).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,己知直线y=2x+4与x轴,y轴分别交于A,B两点,则线段AB的中垂线l的函数表达式为y=$-\frac{1}{2}$x+$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案