精英家教网 > 初中数学 > 题目详情
已知,M是等边△ABC边BC上的点.
(1)如图1,过点M作MN∥AC且交于点N,求证:BM=BN;
(2)如图2,连接AM,过点M作∠AMH=60°,MH与∠ACB的邻补角的平分线交与点H,过H作HD⊥BC于点D.求证:MA=MH.
分析:(1)由条件可以得出∠A=∠B=∠C=60°,再根据平行线的性质就可以得出∠BMN=∠BNM=60°,得出△BNM是等边三角形就可以得出结论;
(2)过点M作MN∥AC交AB于N,由条件可以得出∠HMC=∠BAM,∠ANM=∠MCH和AN=BC就可以得出△ANM≌△MCH,就可以得出结论.
解答:解:(1)∵△ABC是等边三角形,
∴∠A=∠B=∠C=60°,AB=BC=AC.
∵MN∥AC,
∴∠BMN=∠C=60°,∠BNM=∠A=60°.
∴∠BMN=∠BNM=∠B=60°,
∴△BNM是等边三角形,
∴BM=BN;

(2)过点M作MN∥AC交AB于N,
∴BM=BN,∠ANM=120°.
∵∠AMH=60°,
∴∠AMB+∠HMC=120°.
∵∠B=60°,
∴∠AMB+∠BAM=120°.
∴∠HMC=∠BAM.
∵∠ACB=60°,
∴∠ACD=120°.
∵CH平分∠ACD,
∴∠ACH=
1
2
∠ACD=60°,
∴∠MCH=120°,
∴∠ANM=∠MCH.
∵AB=BC,
∴AB-BN=BC-BM,
∴AN=BC.
在△ANM和△MCH中,
∠BAM=∠HMC
AN=BC
∠ANM=∠MCH

∴△ANM≌△MCH(ASA),
∴MA=MH.
点评:本题考查了等边三角形的性质的运用,平行线的性质的运用,角平分线的性质的运用,全等时间性的判定与性质的运用,解答时证明三角形全等是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图(1),已知圆O是等边△ABC的外接圆,过O点作MN∥BC分别交AB、AC于M、N,且MN=a.另一个与△ABC全等的等边△DEF的顶点D在MN上移动(不与点M、N重合),并始终保持EF∥BC,DF交AB于点P,DE交AC于点Q.
(1)试判断四边形APDQ的形状,并进行证明;
(2)设DM为x,四边形APDQ的面积为y,试探究y与x的函数关系式;四边形APDQ的面积能取到最大值吗?如果能,请求出它的最大值,并确定此时D点的位置.
(3)如图(2),当D点和圆心O重合时,请判断四边形APDQ的形状,并说精英家教网明理由;你能发现四边形APDQ的面积与△ABC的面积有何关系吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

19、已知,△ABC是等边三角形,将一块含30°角的直角三角板DEF如图放置,让三角板在BC所在的直线l上向右平移.当点E与点B重合时,点A恰好落在三角板的斜边DF上.
问:在三角板平移过程中,图中是否存在与线段EB始终相等的线段(假定AB、AC与三角板斜边的交点为G、H)?如果存在,请指出这条线段,并证明;如果不存在,请说明理由.
(说明:结论中不得含有图中未标识的字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

22、已知,△ABC是等边三角形,将一块含有30°角的直角三角板DEF如图放置,让三角板在BC所在的直线上向右平移,如图1,当点E与点B重合时,点A恰好落在三角形的斜边DF上.
(1)利用图1证明:EF=2BC;
(2)在三角板的平移过程中,在图2中线段EB=AH是否始终成立(假定AB,AC与三角板斜边的交点为G、H)?如果成立,请证明;如果不成立,请说明理由?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•长宁区二模)已知点G是等边△ABC的中心,设
AB
=
a
AC
=
b
,用向量
a
b
表示
AG
=
1
3
a
+
1
3
b
1
3
a
+
1
3
b

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:△ABC是等边三角形,△BDC是等腰三角形,其中∠BDC=120°,过点D作∠EDF=60°,分别交AB于E,交AC于F,连接EF.
(1)若BE=CF,求证:①△DEF是等边三角形;②BE+CF=EF.
(2)若BE≠CF,即E、F分别是线段AB,AC上任意一点,BE+CF=EF还会成立吗?请说明理由.

查看答案和解析>>

同步练习册答案