精英家教网 > 初中数学 > 题目详情

抛物线y=ax2的对称轴是________.

练习册系列答案
相关习题

科目:初中数学 来源:湖北省随州市2010年初中毕业生升学考试数学试题 题型:059

已知抛物线y=ax2+bx+c(a≠0)顶点为C(1,1)且过原点O.过抛物线上一点P(x,y)向直线y=作垂线,垂足为M,连FM(如图).

(1)求字母a,b,c的值;

(2)在直线x=1上有一点F(1,),求以PM为底边的等腰三角形PFM的P点的坐标,并证明此时△PFM为正三角形;

(3)对抛物线上任意一点P,是否总存在一点N(1,t),使PM=PN恒成立,若存在请求出t值,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在平面直角坐标系中,已知点M的坐标是(3,0),半径为2的⊙M交x轴于E、F

两点,过点P(-1,0)作⊙M的切线,切点为点A,过点A作AB⊥x轴于点C,交⊙M于

点B。抛物线yax2bxc经过P、B、M三点。

1.(1)求该抛物线的函数表达式;(3分)

2.(2)若点Q是抛物线上一动点,且位于P、B两点之间,设四边形APQB的面积为S,点Q

横坐标为x,求S与x之间的函数关系式,并求S的最大值和此时点Q的坐标;(4分)

3.(3)如图2,将弧AEB沿弦AB对折后得到弧AE′B,试判断直线AF与弧AE′B的位置关系,

并说明理由。(3分)

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在平面直角坐标系中,已知点M的坐标是(3,0),半径为2的⊙M交x轴于E、F
两点,过点P(-1,0)作⊙M的切线,切点为点A,过点A作AB⊥x轴于点C,交⊙M于
点B。抛物线yax2bxc经过P、B、M三点。

【小题1】(1)求该抛物线的函数表达式;(3分)
【小题2】(2)若点Q是抛物线上一动点,且位于P、B两点之间,设四边形APQB的面积为S,点Q
横坐标为x,求S与x之间的函数关系式,并求S的最大值和此时点Q的坐标;(4分)
【小题3】(3)如图2,将弧AEB沿弦AB对折后得到弧AE′B,试判断直线AF与弧AE′B的位置关系,
并说明理由。(3分)

查看答案和解析>>

科目:初中数学 来源:2011年广东省深圳市宝安区中考模拟数学卷 题型:解答题

如图1,在平面直角坐标系中,已知点M的坐标是(3,0),半径为2的⊙M交x轴于E、F
两点,过点P(-1,0)作⊙M的切线,切点为点A,过点A作AB⊥x轴于点C,交⊙M于
点B。抛物线yax2bxc经过P、B、M三点。

【小题1】(1)求该抛物线的函数表达式;(3分)
【小题2】(2)若点Q是抛物线上一动点,且位于P、B两点之间,设四边形APQB的面积为S,点Q
横坐标为x,求S与x之间的函数关系式,并求S的最大值和此时点Q的坐标;(4分)
【小题3】(3)如图2,将弧AEB沿弦AB对折后得到弧AE′B,试判断直线AF与弧AE′B的位置关系,
并说明理由。(3分)

查看答案和解析>>

科目:初中数学 来源:2011年广东省深圳市宝安区中考模拟数学卷 题型:解答题

如图1,在平面直角坐标系中,已知点M的坐标是(3,0),半径为2的⊙M交x轴于E、F

两点,过点P(-1,0)作⊙M的切线,切点为点A,过点A作AB⊥x轴于点C,交⊙M于

点B。抛物线yax2bxc经过P、B、M三点。

1.(1)求该抛物线的函数表达式;(3分)

2.(2)若点Q是抛物线上一动点,且位于P、B两点之间,设四边形APQB的面积为S,点Q

横坐标为x,求S与x之间的函数关系式,并求S的最大值和此时点Q的坐标;(4分)

3.(3)如图2,将弧AEB沿弦AB对折后得到弧AE′B,试判断直线AF与弧AE′B的位置关系,

并说明理由。(3分)

 

查看答案和解析>>

同步练习册答案