精英家教网 > 初中数学 > 题目详情
如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C,顶精英家教网点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;
(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.
分析:(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数的值,进而可用配方法求出其顶点D的坐标;
(2)根据抛物线的解析式可求出C点的坐标,由于CD是定长,若△CDH的周长最小,那么CH+DH的值最小,由于EF垂直平分线段BC,那么B、C关于直线EF对称,所以BD与EF的交点即为所求的H点;易求得直线BC的解析式,关键是求出直线EF的解析式;由于E是BC的中点,根据B、C的坐标即可求出E点的坐标;可证△CEG∽△COB,根据相似三角形所得的比例线段即可求出CG、OG的长,由此可求出G点坐标,进而可用待定系数法求出直线EF的解析式,由此得解;
(3)过K作x轴的垂线,交直线EF于N;设出K点的横坐标,根据抛物线和直线EF的解析式,即可表示出K、N的纵坐标,也就能得到KN的长,以KN为底,F、E横坐标差的绝对值为高,可求出△KEF的面积,由此可得到关于△KEF的面积与K点横坐标的函数关系式,根据所得函数的性质即可求出其面积的最大值及对应的K点坐标.
解答:解:(1)∵抛物线y=ax2+bx+4与x轴的两个交点分别为A(-4,0)、B(2,0),
16a-4b+4=0
4a+2b+4=0

解得a=-
1
2
,b=-1.
所以抛物线的解析式为y=-
1
2
x2-x+4
,顶点D的坐标为(-1,
9
2
).

(2)设抛物线的对称轴与x轴交于点M,
因为EF垂直平分BC,即C关于直线EG的对称点为B,
连接BD交于EF于一点,则这一点为所求点H,使DH+CH最小,精英家教网
即最小为:DH+CH=DH+HB=BD=
BM2+DM2
=
3
2
13

CD=
12+(
9
2
-4)
2
=
5
2

∴△CDH的周长最小值为CD+DH+CH=
5
+3
13
2

设直线BD的解析式为y=k1x+b1,则
-k1+b1=
9
2
2k1+b1=0

解得:
k1=-
3
2
b1=3

所以直线BD的解析式为y=-
3
2
x+3;
由于BC=2
5
,CE=
1
2
BC=
5
,Rt△CEG∽Rt△COB,
得CE:CO=CG:CB,
所以CG=2.5,GO=1.5,G(0,1.5);
同理可求得直线EF的解析式为y=
1
2
x+
3
2

联立直线BD与EF的方程,解得使△CDH的周长最小的点H(
3
4
15
8
);

(3)设K(t,-
1
2
t2-t+4
),-4<t<2、过K作x轴的垂线交EF于N;
则KN=yK-yN=-
1
2
t2-t+4
-(
1
2
t+
3
2
)=-
1
2
t2-
3
2
t+
5
2

所以S△EFK=S△KFN+S△KNE=
1
2
KN(t+3)+
1
2
KN(1-t)=2KN=-t2-3t+5=-(t+
3
2
2+
29
4

即当t=-
3
2
时,△EFK的面积最大,最大面积为
29
4
,此时K(-
3
2
35
8
).
点评:此题是二次函数的综合类试题,考查了二次函数解析式的确定、轴对称的性质、相似三角形的判定和性质、三角形面积的求法、二次函数的应用等知识,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,直线y=ax+b与抛物线y=ax2+bx+c的图象在同一坐标系中可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=-ax2-ax+1经过点P(-
1
2
9
8
),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D精英家教网两点,试问当x为何值时,线段CD有最大值,其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=-ax2+ax+6a交x轴负半轴于点A,交x轴正半轴于点B,交y轴正半轴于点D,精英家教网O为坐标原点,抛物线上一点C的横坐标为1.
(1)求A,B两点的坐标;
(2)求证:四边形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+ax+c与y轴交于点C(0,-2),精英家教网与x轴交于点A、B,点A的坐标为(-2,0).
(1)求该抛物线的解析式;
(2)M是线段OB上一动点,N是线段OC上一动点,且ON=2OM,分别连接MC、MN.当△MNC的面积最大时,求点M、N的坐标;
(3)若平行于x轴的动直线与该抛物线交于点P,与线段AC交于点F,点D的坐标为(-1,0).问:是否存在直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案