精英家教网 > 初中数学 > 题目详情
5.(1)已知:如图所示,AB∥CD,∠A=∠C,求证:BC∥AD
证明:∵AB∥CD已知
∴∠ABE=∠C(两直线平行,同位角相等)
∵∠A=∠C已知
∴∠ABE=∠A(等量代换)
∴BC∥AD(内错角相等,两直线平行)
(2)请写出问题(1)的逆命题并判断他是真命题还是假命题,真命题请写出证明过程,假命题举出反例.

分析 (1)利用平行线的性质,由AB∥CD得到∠ABE=∠C,再利用∠A=∠C得到∠ABE=∠A,然后根据平行线的判定方法可判断BC∥AD;
(2)(1)的逆命题为:已知:如图所示,BC∥AD,∠A=∠C,求证:AB∥CD,它为真命题,同(1)的证明方法一样.

解答 (1)证明:∵AB∥CD(已知)
∴∠ABE=∠C(两直线平行,同位角相等)
∵∠A=∠C(已知)
∴∠ABE=∠A(等量代换)
∴BC∥AD(内错角相等,两直线平行)
故答案为∠C,两直线平行,同位角相等;
(2)(1)的逆命题为:
已知:如图所示,BC∥AD,∠A=∠C,求证:AB∥CD.(它为真命题)
证明:∵BC∥AD(已知)
∴∠ABE=∠A(两直线平行,同位角相等)
∵∠A=∠C(已知)
∴∠ABE=∠C(等量代换)
∴AB∥CD(内错角相等,两直线平行).

点评 本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.也考查了平行线的判定与性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

15.如图,Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,F为CD上一点,且CF=$\frac{1}{3}$CD,过点B作BE∥DC交AF的延长线于点E,则BE的长为(  )
A.6B.4C.7D.12

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在平面直角坐标系中,矩形ABCD的顶点A、D在坐标轴上,其坐标分别为(2,0),(0,4),对角线AC⊥x轴.
(1)求直线DC对应的函数解析式
(2)若反比例函数y=$\frac{k}{x}$(k>0)的图象经过DC的中点M,请判断这个反比例函数的图象是否经过点B,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.下列说法正确的是(  )
A.无限小数是无理数B.$\sqrt{16}$的平方根是±4
C.-6是(-6)2的一个算术平方根D.-5的立方根是$\root{3}{-5}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.小明的身高不低于1.7米,设身高为h米,用不等式可表示为(  )
A.h>1.7B.h<17C.h≤1.7D.h≥1.7

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,AC是⊙O的直径,弦BE⊥AC于H,F为⊙O上的一点,过F的直线与AC延长线交于点D,与BE的延长线交于点M,连接AF交BM于G,且MF=MG.
(1)求证:MD为⊙O的切线;
(2)若MD∥AB,写出FG、EG、MF之间的关系,并说明理由;
(3)在(2)的条件下,若cosM=$\frac{4}{5}$,FD=6,求AG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,从数轴的原点O向右数出3个单位,记为点A,过点A作数轴的垂线并截取AB为1个单位长度,连接OB,以点O为圆心,以OB为半径画弧,交数轴的正半轴于点C,则点C所表示的实数为$\sqrt{10}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.观察下列各个等式的规律:
第一个等式:$\frac{{{2^2}-{1^2}-1}}{2}$=1,第二个等式:$\frac{{{3^2}-{2^2}-1}}{2}$=2,第三个等式:$\frac{{{4^2}-{3^2}-1}}{2}$=3…
请用上述等式反映出的规律解决下列问题:
(1)直接写出第四个等式;
(2)猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.直线l的解析式为y=-2x+2,分别交x轴、y轴于点A,B.
(1)写出A,B两点的坐标,并画出直线l的图象;
(2)将直线l向上平移4个单位得到l1,l1交x轴于点C.作出l1的图象,l1的解析式是y=-2x+6.
(3)将直线l绕点A顺时针旋转90°得到l2,l2交l1于点D.作出l2的图象,tan∠CAD=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案