科目:初中数学 来源: 题型:
如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点(1,﹣1),且对称轴为在线x=2,点P、Q均在抛物线上,点P位于对称轴右侧,点Q位于对称轴左侧,PA垂直对称轴于点A,QB垂直对称轴于点B,且QB=PA+1,设点P的横坐标为m.
(1)求这条抛物线所对应的函数关系式;
(2)求点Q的坐标(用含m的式子表示);
(3)请探究PA+QB=AB是否成立,并说明理由;
(4)抛物线y=a1x2+b1x+c1(a1≠0)经过Q、B、P三点,若其对称轴把四边形PAQB分成面积为1:5的两部分,直接写出此时m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
杨梅是漳州的特色时令水果,杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价比第一批每件多了5元.
(1)第一批杨梅每件进价多少元?
(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销,要使第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折?(利润=售价﹣进价)
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F
同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动
(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,
经过t秒△DEF为等边三角形,则t 的值为 .
![]() |
查看答案和解析>>
科目:初中数学 来源: 题型:
如图1,抛物线平移后过点A(8,,0)和原点,顶点为B,对称轴与
轴相交于点C,与原抛物线相交于点D.
(1)求平移后抛物线的解析式并直接写出阴影部分的面积;
(2)如图2,直线AB与轴相交于点P,点M为线段OA上一动点,
为直角,边MN与AP相交于点N,设
,试探求:
①为何值时
为等腰三角形;
②为何值时线段PN的长度最小,最小长度是多少.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com