18£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy=$\frac{1}{2}$x2+bx+c¹ýµãB£¨8£¬6£©£¬ÓëXÊä½»ÓÚµãA£¨2£¬0£©¡¢µãD£¬¶Ô³ÆÖáÓëxÖá½»ÓÚµãC£®Ï߶ÎBCµÄÑÓ³¤ÏßÓëÅ×ÎïÏß½»ÓÚµãE£¬Á¬½áBD¡¢DE£®
£¨1£©Çób¡¢cµÄÖµ£®
£¨2£©ÇóÅ×ÎïÏßy=$\frac{1}{2}$x2+bx+cµÄ¶¥µã×ø±ê¼°µãDµÄ×ø±ê£®
£¨3£©Çó¡÷BDEµÄÃæ»ý£®
£¨4£©µãPÊÇÅ×ÎïÏßÉÏÒ»µã£¬Èô¡÷ADPµÄÃæ»ýÓë¡÷BCDµÄÃæ»ýÖ®±ÈΪ1£º4£¬ÇóµãpµÄ×ø±ê£®

·ÖÎö £¨1£©°ÑB£¨8£¬6£©£¬A£¨2£¬0£©´úÈëÅ×ÎïÏß½âÎöʽ¼´¿É½â¾öÎÊÌ⣮
£¨2£©Áîy=0£¬½â·½³Ì¼´¿ÉµÃµ½µãD×ø±ê£¬ÀûÓÃÅä·½·¨Çó³ö¶¥µã×ø±ê¼´¿É£®
£¨3£©Çó³öÖ±ÏßBC½âÎöʽ£¬ÀûÓ÷½³Ì×éÇó³öµãE×ø±ê£¬ÓÉS¡÷BDE=S¡÷CDE+S¡÷CDB¼´¿É½â¾öÎÊÌ⣮
£¨4£©ÉèµãP×ø±êΪ£¨m£¬$\frac{1}{2}$m2-4m+6£©£¬Áгö·½³Ì¼´¿É½â¾öÎÊÌ⣮

½â´ð ½â£º£¨1£©ÓÉÌâÒâ$\left\{\begin{array}{l}{32+8b+c=6}\\{2+2b+c=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{b=-4}\\{c=6}\end{array}\right.$£®

£¨2£©¡ßy=$\frac{1}{2}$x2-4x+6=$\frac{1}{2}$£¨x-4£©2-2£¬
¡àÅ×ÎïÏ߶¥µã×ø±êΪ£¨4£¬-2£©£¬
Áîy=0£¬Ôò$\frac{1}{2}$x2-4x+6=0£¬½âµÃx=2»ò6£¬
¡àµãD×ø±êΪ£¨6£¬0£©£®

£¨3£©ÉèÖ±ÏßBC½âÎöʽΪy=kx+b£¬ÔòÓÐ$\left\{\begin{array}{l}{4k+b=0}\\{8k+b=6}\end{array}\right.$
½âµÃ$\left\{\begin{array}{l}{k=\frac{3}{2}}\\{b=-6}\end{array}\right.$£¬
¡àÖ±ÏßBC½âÎöʽΪy=$\frac{3}{2}$x-6£¬
ÓÉ$\left\{\begin{array}{l}{y=\frac{3}{2}x-6}\\{y=\frac{1}{2}{x}^{2}-4x+6}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=8}\\{y=6}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=3}\\{y=-\frac{3}{2}}\end{array}\right.$£¬
¡àµãE×ø±êΪ£¨3£¬-$\frac{3}{2}$£©£¬
¡àS¡÷BDE=S¡÷CDE+S¡÷CDB=$\frac{1}{2}$¡Á2¡Á$\frac{3}{2}$+$\frac{1}{2}$¡Á2¡Á6=$\frac{15}{2}$£¬

£¨4£©ÉèµãP×ø±êΪ£¨m£¬$\frac{1}{2}$m2-4m+6£©£¬
ÓÉÌâÒâ$\frac{1}{2}$¡Á4¡Á|$\frac{1}{2}$m2-4m+6|=$\frac{1}{4}$¡Á$\frac{1}{2}$¡Á2¡Á6£¬
¡à$\frac{1}{2}$m2-4m+6=$¡À\frac{3}{4}$£¬
½âµÃm=$\frac{8¡À\sqrt{22}}{2}$»òm=$\frac{8¡À\sqrt{10}}{2}$£¬
¡àµãP×ø±êΪ£¨$\frac{8+\sqrt{22}}{2}$£¬$\frac{3}{4}$£©»ò£¨$\frac{8-\sqrt{22}}{2}$£¬$\frac{3}{4}$£©»ò£¨$\frac{8+\sqrt{10}}{2}$£¬-$\frac{3}{4}$£©»ò£¨$\frac{8-\sqrt{10}}{2}$£¬-$\frac{3}{4}$£©£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢´ý¶¨ÏµÊý·¨¡¢Ò»´Îº¯ÊýµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÕÆÎÕ´ý¶¨ÏµÊý·¨£¬Ñ§»áÀûÓ÷½³Ì×éÇóÁ½¸öº¯Êý½»µã×ø±ê£¬Ñ§»áת»¯µÄ˼Ïë˼¿¼ÎÊÌ⣬°ÑÎÊÌâת»¯Îª·½³Ì½â¾ö£¬ÊôÓÚÖп¼³£¿¼ÌâÐÍ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Èçͼ£¬a¡¢b¡¢cÊÇ¡÷ABCµÄÈý±ß³¤£¬ÇÒ$\frac{a}{b}$=$\frac{a+b}{a+b+c}$£¬BD=c£¬Ôò¡ÏCAB£¬¡ÏCBAµÄ¹ØϵÊÇ£¨¡¡¡¡£©
A£®¡ÏCAB£¾2¡ÏCBAB£®¡ÏCBA=2¡ÏCABC£®¡ÏCAB£¼2¡ÏCBAD£®²»È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Çó×÷Ò»µãP£¬Ê¹Æäµ½A¡¢BÁ½µãµÄ¾àÀëÏàµÈ£¬ÇÒµ½¡ÏMONÁ½±ßµÄ¾àÀëÏàµÈ£®£¨Ö»Òª±£Áô×÷ͼºÛ¼££¬ËµÃ÷ËùÇó×÷µÄµã£¬²»±Øд³ö×÷ͼ¹ý³Ì£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÏÈÔĶÁÀí½âÏÂÃæµÄÀýÌ⣬ÔÙ°´ÒªÇó½â´ðÏÂÁÐÎÊÌ⣮
Çó´úÊýʽy2+4y+8µÄ×îСֵ£®
½â£ºy2+4y+8=y2+4y+4+4=£¨y+2£©2+4¡ß£¨y+2£©2¡Ý0£¬
¡à£¨y+2£©2+4¡Ý4
¡ày2+4y+8µÄ×îСֵÊÇ4£®
£¨1£©Çó´úÊýʽm2+m+1µÄ×îСֵ£»
£¨2£©Çó´úÊýʽ4-x2+2xµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÈçͼÊÇÂ׶ذÂÔË»áµÄÌᄊ±ÈÈü³¡µØ£¬¹ú¼ÊÌïÁªÃ»Óй涨Ìᄊ³¡µÄ¾«È·³ß´ç£¬Ö»¸ø³öÁËÒ»¸ö·¶Î§£¬ËùÒÔ¸÷¸öÌᄊ³¡µÄ³ß´ç¶¼ÓÐËù²»Í¬£¬µ«×îÄÚȦÅܵÀµÄÖÐÐÄÖܳ¤ÒªÇó¶¼ÊÇ400Ã×£¬Èç¹ûÁ½±ßµÄ°ëÔ²Ö±¾¶ÎªaÃ×£¬Ã¿¸öÅܵÀµÄ¿í¶ÈÊÇbÃ×£¬Ò»¹²ÓÐc¸öÅܵÀ£®
£¨1£©ÓôúÊýʽ±íʾ×îÍâ±ßµÄһȦÅܵÀµÄ³¤¶È£»
£¨2£©µ±a=32£¬b=1.2£¬c=8ʱ£¬Çó×îÍâ±ßµÄһȦÅܵÀµÄ³¤£®£¨ÎÂÜ°Ìáʾ£ºÒ»¸öȦµ±Ö±¾¶Ôö¼Ó1ʱ£¬ËüµÄÖܳ¤¾ÍÔö¼Ó¦Ð£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èçͼ£¬AB¡ÎCD¡ÎEF¡ÎGH£¬ANÓëBMµÄ½»µãOÔÚEFÉÏ£¬ÔòͼÈý½ÇÐεĸöÊý±ÈÌÝÐεĸöÊýÉÙ16£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÓÐÀíÊýa£¬bÔÚÊýÖáÉϵÄλÖÃÈçͼËùʾ£¬ÔòÏÂÁÐʽ×ÓÖÐÕýÈ·µÄ¸öÊýÊÇ£¨¡¡¡¡£©¸ö
¢Ùab£¼0£»¢Úa+b£¾0£»¢Ûa-b£¼0£»¢Ü|a|-|b|£¾0£»¢Ý-a£¾-b£®
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Èçͼ£¬DÊÇ¡÷ABCµÄBC±ßÉÏÒ»µã£¬¡ÏB=¡ÏBAD£¬¡ÏADC=80¡ã£¬¡ÏC=70¡ã£¬Ôò¡ÏBAC=70¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®60¡ãµÄÕýÏÒֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{\sqrt{2}}{2}$C£®$\frac{\sqrt{3}}{2}$D£®$\frac{\sqrt{3}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸