Èçͼ£¬µãEÔÚÕý·½ÐÎABCDµÄ±ßCDÉÏÔ˶¯£¬ACÓëBE½»ÓÚµãF£®
£¨1£©Èçͼ1£¬µ±µãEÔ˶¯µ½DCµÄÖеãʱ£¬Çó¡÷ABFÓëËıßÐÎADEFµÄÃæ»ýÖ®±È£»
£¨2£©Èçͼ2£¬µ±µãEÔ˶¯µ½CE£ºED=2£º1ʱ£¬Çó¡÷ABFÓëËıßÐÎADEFµÄÃæ»ýÖ®±È£»
£¨3£©µ±µãEÔ˶¯µ½CE£ºED=3£º1ʱ£¬Ð´³ö¡÷ABFÓëËıßÐÎADEFµÄÃæ»ýÖ®±È£»µ±µãEÔ˶¯µ½CE£ºED=n£º1£¨nÊÇÕýÕûÊý£©Ê±£¬²ÂÏë¡÷ABFÓëËıßÐÎADEFµÄÃæ»ýÖ®±È£¨Ö»Ð´½á¹û£¬²»ÒªÇóд³ö¼ÆËã¹ý³Ì£©£»
£¨4£©ÇëÄãÀûÓÃÉÏÊöͼÐΣ¬Ìá³öÒ»¸öÀàËƵÄÎÊÌâ
¾«Ó¢¼Ò½ÌÍø¾«Ó¢¼Ò½ÌÍø
·ÖÎö£ºÁ¬½ÓDF£¬Ò׵á÷FEC¡×¡÷FBA£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖÊ£¬°´Ç°Á½¸öСÌⲻͬµÄÒªÇó¿ÉµÃ¡÷CEFÓë¡÷ADFµÄÃæ»ýµÄ±È£®
£¨1£©ÖÐΪ
S¡÷CEF
S¡÷ABF
=
1
4
£»
£¨2£©ÖÐΪ
S¡÷CEF
S¡÷ABF
=
4
9
£»½ø¶ø¿ÉµÃ¡÷ABFÓëËıßÐÎADEFµÄÃæ»ýÖ®±È£»
£¨3£©·ÖÎö¿ÉµÃ¹æÂÉÓе±CE£ºED=n£º1ʱ£¬
S¡÷ABF
SËıßÐÎADEF
=
(n+1)2
(n+1)2+n
(=
n2+2n+1
n2+3n+1
)
¿ÉµÃ´ð°¸£»
£¨4£©¸ù¾Ý£¨3£©µÄ½áÂÛ£¬Ìá³öÀàËƵÄÎÊÌâ¼´¿É£®
½â´ð£º¾«Ó¢¼Ò½ÌÍø½â£º£¨1£©Èçͼ1£¬Á¬½ÓDF£®
ÒòΪµãEΪCDµÄÖе㣬ËùÒÔ
EC
AB
=
EC
DC
=
1
2
£®
¾ÝÌâÒâ¿ÉÖ¤¡÷FEC¡×¡÷FBA£¬ËùÒÔ
S¡÷CEF
S¡÷ABF
=
1
4
£®£¨2·Ö£©
ÒòΪS¡÷DEF=S¡÷CEF£¬S¡÷ABF=S¡÷ADF£¬£¨2·Ö£©
ËùÒÔ
S¡÷ABF
SËıßÐÎADEF
=
S¡÷ABF
S¡÷ADF+S¡÷DEF
=
4
5
£®£¨4·Ö£©

£¨2£©Èçͼ2£¬Á¬½ÓDF£®
Ó루1£©Í¬Àí¿ÉÖª
S¡÷CEF
S¡÷ABF
=
4
9
£¬S¡÷DEF=
1
2
S¡÷CEF
£¬
S¡÷ABF=S¡÷ADF£¬
ËùÒÔ
S¡÷ABF
SËıßÐÎADEF
=
S¡÷ABF
S¡÷DEF+S¡÷ADF
=
9
11
£®£¨8·Ö£©

£¨3£©µ±CE£ºED=3£º1ʱ£¬
S¡÷ABF
SËıßÐÎADEF
=
16
19
£®£¨9·Ö£©
µ±CE£ºED=n£º1ʱ£¬
S¡÷ABF
SËıßÐÎADEF
=
(n+1)2
(n+1)2+n
=
n2+2n+1
n2+3n+1
£®£¨12·Ö£©

£¨4£©ÌáÎʾÙÀý£º
¢Ùµ±µãEÔ˶¯µ½CE£ºED=5£º1ʱ£¬¡÷ABFÓëËıßÐÎADEFµÄÃæ»ýÖ®±ÈÊǶàÉÙ£»
¢Úµ±µãEÔ˶¯µ½CE£ºED=2£º3ʱ£¬¡÷ABFÓëËıßÐÎADEFµÄÃæ»ýÖ®±ÈÊǶàÉÙ£»
¢Ûµ±µãEÔ˶¯µ½CE£ºED=m£ºn£¨m£¬nÊÇÕýÕûÊý£©Ê±£¬¡÷ABFÓëËıßÐÎADEFµÄÃæ»ýÖ®±ÈÊǶàÉÙ£®
ÆÀ·Ö˵Ã÷£ºÌá³öÀàËÆ¢ÙµÄÎÊÌâ¸ø1·Ö£¬ÀàËÆ¢ÚµÄÎÊÌâ¸ø3·Ö£¬ÀàËÆ¢ÛµÄÎÊÌâ¸ø4·Ö£»¸½¼Ó·Ö×î¶à4·Ö£¬¿É¼ÆÈë×Ü·Ö£¬µ«×Ü·Ö²»Äܳ¬¹ý12·Ö£®
µãÆÀ£º½â´ð±¾ÌâÒª³ä·ÖÀûÓÃÕý·½ÐεÄÌØÊâÐÔÖÊ£®×¢ÒâÔÚÕý·½ÐÎÖеÄÌØÊâÈý½ÇÐεÄÓ¦Ó㬸ãÇå³þ¾ØÐΡ¢ÁâÐΡ¢Õý·½ÐÎÖеÄÈý½ÇÐεÄÈý±ß¹Øϵ£¬¿ÉÓÐÖúÓÚÌá¸ß½âÌâËٶȺÍ׼ȷÂÊ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬µãEÔÚÕý·½ÐÎABCDµÄ±ßBCµÄÑÓ³¤ÏßÉÏ£¬Èç¹ûBE=BD£¬ÄÇô¡ÏE=
 
¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬µãEÔÚÕý·½ÐÎABCDµÄ±ßABÉÏ£¬AE=1£¬BE=2£®µãFÔÚ±ßBCµÄÑÓ³¤ÏßÉÏ£¬ÇÒCF=BC£»PÊDZßBCÉϵĶ¯µã£¨ÓëµãB²»Öغϣ©£¬PQ¡ÍEF£¬´¹×ãΪO£¬²¢½»±ßADÓÚµãQ£»QH¡ÍBC£¬´¹×ãΪH£®
£¨1£©ÇóÖ¤£º¡÷QPH¡×¡÷FEB£»
£¨2£©ÉèBP=x£¬EQ=y£¬Çóy¹ØÓÚxµÄº¯Êý½âÎöʽ£¬²¢Ð´³öËüµÄ¶¨ÒåÓò£»
£¨3£©ÊÔ̽Ë÷¡÷PEQÊÇ·ñ¿ÉÄܳÉΪµÈÑüÈý½ÇÐΣ¿Èç¹û¿ÉÄÜ£¬ÇëÇó³öxµÄÖµ£»Èç¹û²»¿ÉÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬µãEÔÚÕý·½ÐÎABCDµÄ±ßABÉÏ£¬ÈôEBµÄ³¤Îª1£¬ECµÄ³¤Îª2£¬ÄÇôÕý·½ÐÎABCDµÄÃæ»ýÊÇ£¨¡¡¡¡£©
A¡¢
3
B¡¢
5
C¡¢3
D¡¢5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•×ÊÑô£©Èçͼ£¬µãEÔÚÕý·½ÐÎABCDÄÚ£¬Âú×ã¡ÏAEB=90¡ã£¬AE=6£¬BE=8£¬ÔòÒõÓ°²¿·ÖµÄÃæ»ýÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Çú¾¸£©Èçͼ£¬µãEÔÚÕý·½ÐÎABCDµÄ±ßABÉÏ£¬Á¬½ÓDE£¬¹ýµãC×÷CF¡ÍDEÓÚF£¬¹ýµãA×÷AG¡ÎCF½»DEÓÚµãG£®
£¨1£©ÇóÖ¤£º¡÷DCF¡Õ¡÷ADG£®
£¨2£©ÈôµãEÊÇABµÄÖе㣬Éè¡ÏDCF=¦Á£¬Çósin¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸