精英家教网 > 初中数学 > 题目详情

如图①,将两块全等的三角板拼在一起,其中△ABC的边BC在直线l上,AC⊥BC且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,EF⊥FP且EF=FP.
(1)在图①中,请你通过观察、测量,猜想并直接写出AB与AP所满足的数量关系和位置关系,并证明;
(2)将三角板△EFP沿直线l向左平移到图②的位置时,EP交AC于点Q,连接AP、BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想.

(1)AB=AP且AB⊥AP,
证明:∵AC⊥BC且AC=BC,
∴△ABC为等腰直角三角形,
∴∠BAC=∠ABC=(180°-∠ACB)=45°,
又∵△ABC与△EFP全等,
同理可证∠PEF=45°,
∴∠BAP=45°+45°=90°,
∴AB=AP且AB⊥AP.

(2)BQ与AP所满足的数量关系是AP=BQ,位置关系是AP⊥BQ,
证明:延长BQ交AP于G,
由(1)知,∠EPF=45°,∠ACP=90°,
∴∠PQC=45°=∠QPC,
∴CQ=CP,
∵∠ACB=∠ACP=90°,AC=BC,
∴在△BCQ和△ACP中

∴△BCQ≌△ACP(SAS),
∴AP=BQ,∠CBQ=∠PAC,
∵∠ACB=90°,
∴∠CBQ+∠BQC=90°,
∵∠CQB=∠AQG,
∴∠AQG+∠PAC=90°,
∴∠AGQ=180°-90°=90°,
∴AP⊥BQ.
分析:(1)根据等腰直角三角形性质得出AB=AP,∠BAC=∠PAC=45°,求出∠BAP=90°即可;
(2)求出CQ=CP,根据SAS证△BCQ≌△ACP,推出AP=BQ,∠CBQ=∠PAC,根据三角形内角和定理求出∠CBQ+∠BQC=90°,推出∠PAC+∠AQG=90°,求出∠AGQ=90°即可.
点评:本题考查了等腰直角三角形性质和全等三角形的性质和判定,三角形的内角和定理等知识点,主要考查了学生的推理能力和猜想能力,题目比较好.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•太原)数学活动---求重叠部分的面积.
问题情境:数学活动课上,老师出示了一个问题:
如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点G.求重叠部分(△DCG)的面积.

(1)独立思考:请回答老师提出的问题.
(2)合作交流:“希望”小组受此问题的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,你能求出重叠部分(△DGH)的面积吗?请写出解答过程.
(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF绕点D旋转,再提出一个求重叠部分面积的问题.
“爱心”小组提出的问题是:如图3,将△DEF绕点D旋转,DE,DF分别交AC于点M,N,使DM=MN,求重叠部分(△DMN)的面积.
任务:①请解决“爱心”小组提出的问题,直接写出△DMN的面积是
75
16
75
16

②请你仿照以上两个小组,大胆提出一个符合老师要求的问题,并在图4中画出图形,标明字母,不必解答(注:也可在图1的基础上按顺时针旋转).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1是由两块全等的含30°角的直角三角板摆放而成,斜边AC=10.
(1)若将△ADE沿直线AE翻折到如图2的位置,ED'与BC交于点F,求证:CF=EF;
(2)求EF的长;
(3)将图2中的△AD'E沿直线AE向右平移到图3的位置,使D'点落在BC上,求出平移的距离.
精英家教网

查看答案和解析>>

科目:初中数学 来源:2013年山西省高级中等学校招生考试数学 题型:044

数学活动——求重叠部分的面积.

问题情境:数学活动课上,老师出示了一个问题:

如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点G.求重叠部分(△DCG)的面积.

(1)独立思考:请解答老师提出的问题.

(2)合作交流:“希望”小组受此问题的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,你能求出重叠部分(△DGH)的面积吗?请写出解答过程.

(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF绕点D旋转,再提出一个求重叠部分面积的问题.“爱心”小组提出的问题是:如图3,将△DEF绕点D旋转,DE,DF分别交AC于点M,N,使DM=MN求重叠部分(△DMN)的面积、

任务:①请解决“爱心”小组所提出的问题,直接写出△DMN的面积是________.

②请你仿照以上两个小组,大胆提出一个符合老师要求的问题,并在图中画出图形,标明字母,不必解答(注:也可在图(1)的基础上按顺时针方向旋转).

查看答案和解析>>

科目:初中数学 来源:2013年山西省太原市中考数学试卷(解析版) 题型:解答题

数学活动---求重叠部分的面积.
问题情境:数学活动课上,老师出示了一个问题:
如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点G.求重叠部分(△DCG)的面积.

(1)独立思考:请回答老师提出的问题.
(2)合作交流:“希望”小组受此问题的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,你能求出重叠部分(△DGH)的面积吗?请写出解答过程.
(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF绕点D旋转,再提出一个求重叠部分面积的问题.
“爱心”小组提出的问题是:如图3,将△DEF绕点D旋转,DE,DF分别交AC于点M,N,使DM=MN,求重叠部分(△DMN)的面积.
任务:①请解决“爱心”小组提出的问题,直接写出△DMN的面积是______.
②请你仿照以上两个小组,大胆提出一个符合老师要求的问题,并在图4中画出图形,标明字母,不必解答(注:也可在图1的基础上按顺时针旋转).

查看答案和解析>>

科目:初中数学 来源:2013年山西省中考数学试卷(解析版) 题型:解答题

数学活动---求重叠部分的面积.
问题情境:数学活动课上,老师出示了一个问题:
如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点G.求重叠部分(△DCG)的面积.

(1)独立思考:请回答老师提出的问题.
(2)合作交流:“希望”小组受此问题的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,你能求出重叠部分(△DGH)的面积吗?请写出解答过程.
(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF绕点D旋转,再提出一个求重叠部分面积的问题.
“爱心”小组提出的问题是:如图3,将△DEF绕点D旋转,DE,DF分别交AC于点M,N,使DM=MN,求重叠部分(△DMN)的面积.
任务:①请解决“爱心”小组提出的问题,直接写出△DMN的面积是______.
②请你仿照以上两个小组,大胆提出一个符合老师要求的问题,并在图4中画出图形,标明字母,不必解答(注:也可在图1的基础上按顺时针旋转).

查看答案和解析>>

同步练习册答案